12．Concent r at e di sposal
12－1．concent r at e thi ckener
12－1－1．Cal cul at i ons of requi red water area
1］Nat eri al bal ance
Ore dry tonnage15．57dnt／h
Pulp density 20% N
Ore wet tonnage $77.85 \mathrm{wnt} / \mathrm{h}$
Water vol ume $\quad 62.28 \mathrm{~m}^{3} / \mathrm{h}$
Pul p vol une $\quad 66.08 \mathrm{~m}^{3} / \mathrm{h}$

2］Cal cul ation of thi ckener si ze
Settling theories of Coe－ Cl evenger and Tal nge \＆Fich which are often used in chemi cal engi neering and waste wat er treat ment fiel ds have not so of ten been adopted for mining or sewage water processi ng where they use si mple and practical met hods． It is difficult to expl ain complex nass phenonena by single equation．

Water area of the thickener A is given by the following equation．

$$
\begin{equation*}
\mathrm{A}=\frac{\mathrm{Q}}{\mathrm{~V} \alpha} \tag{2}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\text { Q: flow rate of up flow } & {\left[\mathrm{m}^{3} / \mathrm{h}\right]} \\
\text { V: settling vel ocity } & {[\mathrm{m} / \mathrm{h}]}
\end{array}
$$

a : factor based on areal efficiency

The settling vel ocity V was determined to be $0.21 \mathrm{~m} / \mathrm{h}$ by I abor at ory test s ， however，fact or should be 0.6 for saf ety to reet problens due to char acteristics of the ore，pulp density and temper at ure，etc．

$$
\text { Then } \quad A=Q / v=60.93 \mathrm{~m}^{3} / \mathrm{h} \div(0.21 \mathrm{~m} / \mathrm{h} \times 0.6)=483.6 \mathrm{~m}^{2}
$$

Thi ckener di ameter D is gi ven by the following equation．

$$
\begin{array}{rl}
D & D \sqrt{\frac{4 A}{\pi}} \\
\text { Hence } \quad & D=\sqrt{\frac{4 \times 483.6}{3.14}}=24.8 \mathrm{~m} \varphi \rightarrow 26.0 \mathrm{~m}
\end{array}
$$

Check by estimated flow rate v＇

$$
V^{\prime}=O / A=60.93 \mathrm{~m}^{3} / \mathrm{h} \div\left(3.14 / 4 \times 26^{2}\right) \mathrm{m}^{2}=0.15 \mathrm{~m} / \mathrm{h}<0.21 \mathrm{~m} / \mathrm{h} . \ldots O K
$$

Spi got pulp density is determined by detention time in the thi ckener．
Tank vol une ：cyl indrical part ；$\quad V 1=\frac{\pi}{4} D^{2} H t=\frac{3.14}{4} \times 26^{2} \times 3.0=1,592 \mathrm{~m}^{3}$
Coni cal part ；$\quad \mathrm{V} 2=\frac{1}{3} \square \frac{\pi}{4} D^{2} \mathrm{H}_{2}=\frac{1}{3} \times \frac{3.14}{4} \times 26^{2} \times 1.0=177 \mathrm{~m}^{3}$
Tot al ；$\quad \mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}=1,592+177=1,769 \mathrm{~m}^{3}$
Det ention time：$T=V / Q=1,769 \mathrm{~m}^{3} /(66.08+9.03) \mathrm{m}^{3} / \mathrm{h}=23.6 \mathrm{~h}$
In the case of concentrate thickeners，the detention time ranges generally bet ween 20 to 30 hours a day．So the above result will meet this denand．

Requi red tor que for raki ng varies dependi ng on capacity per unit area，spi got density，particle size di stribution and solid specific gravity etc．

Nanuf act ur er＇s dat a of naxi mum tor que are shown in the following．
Naxi mum t or que $t \quad$［ m kg ］

Tank di a． m$]$	Li ght duty	St andar d	Heavy duty
1825	3.24	10.13	20.25
$27-30$	10.13	20.25	47.25

Required power kw is given by the following equation．

$$
K w=\frac{t r p m}{0.9462 \times \eta}
$$

where

$$
\begin{array}{lll}
t: \text { the maxi mumt or que } & {[\mathrm{nit}]} \\
\text { rpm revol uti onary speed } & 0.075 & {[\mathrm{rpm}]} \\
\eta: \text { raki ng mechani cal efficiency } & 0.4 \sim 0.6
\end{array}
$$

then in the case of standard duty of 27 mdi ameter

$$
\mathrm{Kw}=\frac{20.25 \times 0.075}{0.9462 \times 0.5}=3.21 \mathrm{kw} \rightarrow 2.2 \mathrm{kw} \times 2 \text { set s }
$$

12．2．Filters

12．2．1．Type sel ect ion

1］Disc filter

At initial st age of design，si nce requi red noi st ure for concentr ate shi p was very severe．So it was indi spensabl e to install dryer，di sc filter was st udi ed because of its low price．Si nce it was expected to achi eve this misture by drumfilter only and ai d of nat ur al drying，this pl an was rej ected．

2］Filter press

Filtration performance was excellent，however，there were no large model s at that time，in addition it was very expensi ve．So thi s type was excl uded fromt arget．

3］Belt filter

It has rel atively bi gger capacity，however，performance was not good at that time．So it was not sel ected．

4］Drumfilter

It has alot of experiences in domestic and over seas mines and it was expected to satisfy required capacity and filtration performance．So this drumfilters were sel ect ed．

12．2．2．Cal cul ation of required filter area

1］Areal load
After Taggart，he recommended areal load of $60 \sim 80 \mathrm{lb} / \mathrm{ft}^{2} \mathrm{\square h}$ ，namely300～ $400 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~h}$ ．Gener ally speaki ng ，ar eal load of slimy or e shoul d be snaller than these val ue．Base on I eaf test s inthe I abor at ory，we det ermined capacity per unit area，i．e． areal load L as $250 \mathrm{dkg} / \mathrm{m}^{2}$ ，surpl us 20% and 8% of cake mi st ure．

2］Cal cul ation of requi red filter area

Based on the material bal ance in section 12－1－1，required filter area Af can be cal cul ated by the following equation．

$$
A f=\alpha \square T / L
$$

Were T ：dry tonnage of concentrate［dnt／h］

> L: areal l oad [dmt/nT]

Then \quad Af $=1.2 \times 15.57 d n t / h \div 0.25 d n t / m^{2}=74.74 m^{2}$
Nat chi ng nodel to thi s ar ea，will be t wo set s of CD 1014 made by SANK ENG NEERI NG CO．Ltd with filter area＠4．8ní．

Check 40． $8 m^{2} \times 2=81.6 m^{2}>74.74 m^{2} \cdots O K$
Capacity can be regul at ed by sl urry level，vacuumpressure and revol utionary speed of drum besi des filter cl oth can be exchanged in sever al hours．So st and－by machi ne shall not be installed．

Vacuum pump capacity Q_{s} should be $0.3 \sim 1.0 m^{3} / \mathrm{m}^{2} \square \mathrm{~min}$ per filter area and reci procating type of $1.1 m^{3} / \mathrm{min}$ will be recommendable for the altitude to be i nst al led．

$$
Q_{s}=81.6 n^{2} \times 1.1 \mathrm{~m}^{3} / \mathrm{m}^{2}\left[\mathrm{~min} \mathrm{n}=89.76 \mathrm{~m}^{3} / \mathrm{min}\right.
$$

Proper type of the vacuum pumps will be UNOZAWA PVY923：＠46m³／min×90kwx 2set s．
Check $46 \mathrm{~m}^{3} / \mathrm{min} \times 2=92 \mathrm{~m}^{3} / \mathrm{min}>89.76 \mathrm{~m}^{3} / \mathrm{min} \cdots O K$
The ai r compr essor for cake di schar ge shoul d be sane type of $15 \mathrm{kwwi} t \mathrm{~h}$ for grinding in spite of small air consumption due to snap bl owing．

It is unnecessary to install filtrate pump，because enough head will be gotten under moi sture traps．

12－3．Concent rat e conveyor

12－3 1．Sel ection of belt specifications
1］Desi gn concept
Requir ed capacity： $20 \mathrm{mt} / \mathrm{h}$
Naxi mum ore size： $74 \mu \quad$（ 200 mesh）
Act ual sp．Gr．：4．1
Apparent sp．Gr．： 2.0
Angle of repose： 50°
Conveyor I ength：42．5m
Belt width： 0.4 m
Bel t wei ght ：$\quad 4.5 \mathrm{~kg} / \mathrm{m}$
wei ght of revol ving parts $\mathrm{WL}: \quad 22.4 \mathrm{~kg} / \mathrm{m}$

2］Conveyor capacity

$$
Q_{m}=60 \times 1 \times 0.1245 \times(0.9 \times 0.4-0.05) 2 \times 37=26.6 \mathrm{mt} / \mathrm{h}>20 \mathrm{mt} / \mathrm{h} . .0 K
$$

3］Requi red power P ：

Where I ：horizontal length of conveyor（di stance between axi s and axis of pulleys）

Io：calibrated horizont al conveyor length
［ m ］
［m］

| $\mathrm{h}: \mathrm{lift}$ | $[\mathrm{m}]$ |
| :--- | :--- | :--- |
| $\mathrm{Q}:$ tonnage to be carried | $[\mathrm{mt} / \mathrm{h}]$ |
| $\mathrm{V}:$ belt speed | $[\mathrm{m} / \mathrm{m} \mathrm{n}]$ |
| $\mathrm{W}:$ wei ght of revol ving parts without load | $[\mathrm{kg} / \mathrm{m}]$ |
| W1：wei ght of bel t | $[\mathrm{kg} / \mathrm{m}]$ |

Then $B=400 \mathrm{~mm}, \mathrm{Q}=20 \mathrm{mt} / \mathrm{h}, \quad \mathrm{h}=0 \mathrm{~m} \mathrm{I}=42.5 \mathrm{~m} \quad \mathrm{v}=37 \mathrm{~m} / \mathrm{min}$ ，rubber I aggi ng
Driving pulley，$\theta: 200^{\circ}=3.49 \mathrm{rad}, \mu=0.3, \quad W=22.4 \mathrm{~kg} / \mathrm{m}, \quad \mathrm{f}=0.03$
Hence $\quad P_{1}=0.06 \times 0.03 \times 22.4 \times 37 \times(42.5+49) / 367=0.371 \mathrm{kw}$
$\mathrm{P}_{2}=0.03 \times 20 \times(42.5+49) / 367=0.15 \mathrm{kw}$
$P_{3}=+(0 \times 1,340) / 367=0$
$\mathrm{Pt}=0$
So $\quad P=0.371+0.15=0.521 \mathrm{kw}$
Recommended mot or power Pm will be $0.521 / 0.8=0.65 \mathrm{kw}$ ．
I nst al led not or shoul d be 5 ． 5 kw as sane as \＃16～\＃19BC in the crushi ng pl ant in order to mini mize not or spares．

12－4．Concentrate stock yard on me site
12－4．1．St ock yard
1］Desi gn concept
I nvent ory on mine site：Nornally 2， 000 Wht（St ock of about 5days， maxi mumB， 000 Wht

Apparent sp．gr．：2．Ot／m³
St ock met hod：
Hei ght of pile：
Pile up by bucket I oader $\mathrm{H}=5.0 \mathrm{~m}$ naxi mum

2］Cal cul at ion of di mensi on
St ock vol ure：$\quad V=3,000 t \div 2$ ．Ot $/ \mathrm{m}^{3}=1,500 \mathrm{~m}^{3}$
Requi red ar ea：$A=V / H=1,500 \mathrm{~m}^{3} \div 5 \mathrm{~m}=300 \mathrm{~m}^{2}$
I nst al I ed area： $12 \mathrm{mWk} 40 \mathrm{~mL}=480 \mathrm{~m}^{2}>300 \mathrm{~m} 7 \cdots$ OK
Di mensi on of yard ： $12 \mathrm{mWk} 40 \mathrm{~mL} \times 6 \mathrm{mH}=2,880 \mathrm{~m}^{3}>1,500 \mathrm{~m} \mathrm{~m}^{3} \cdots \mathrm{OK}$

12－4 2．Loadi ng equi prent
1］Desi gn concept
Loader type ：wheel loader with $2 \mathrm{~m}^{3}$ bucket
Loading time ：1min nute／bat ch
Loadi ng vol une ：$\quad 5 \mathrm{~m}^{3} / \mathrm{tr}$ uck

2］Cal cul ation of required number of trucks
Required time per a truck： $5 \mathrm{~m}^{3} /$ truck $\div 2 \mathrm{~m}^{3} /$ bat ch× $1 \mathrm{~min} /$ bat ch

$$
\text { = 2. 5min } \mathrm{m} \text { t r uck } \rightarrow 3 \text {. Omi n/t ruck }
$$

Requir ed I oading time a day：3．Omin／t ruck× 40 tr ucks／day＝120min／day $\rightarrow 2 h /$ day Then one unit of loader will be sufficient，so it will be shared with other di vi si ons，i ncl uding 2.5 cl ass bull dozer for pile up．

12－5．Concentrate trucks

12－5－1．Desi gn concept

Di st ance between mine and port：Uskan－100 km Ranau－ 15 km Namert ；tot al 115 km Truck speed：$\quad 30$ km／h
Loadi ng capacity： 10 Wht／truck
Nunber of trips： 1 round trip／day•truck
Avail ability： 80%

12－5－2．Cal cul at i on of truck number
Requi red time for one way： $115 \mathrm{kmx} 2 / 30 \mathrm{~km} / \mathrm{h}=7.6 \mathrm{~h} /$ day
Required trip nunber：400Wtt／day $\div 10 \mathrm{t} / \mathrm{trip}=40 \mathrm{tri} \mathrm{ps}$
Requi red No．of trucks：40trips $\div 1$ trip／truck $=40$ trucks
Tot al No．of trucks：40t rucks $\div 80 \% / 100=50 t$ rucks

