10）Grinding
10－1．Design concept
a）Grinding capacity of one circuit system
Generally speaking，design tendency of grinding capacity of one circuit system has been changed to select larger system where it can treat $10,000 \mathrm{mt}$ a day．

Since design capacity of the Mamut Mill is $18,000 \mathrm{mt} /$ day，number of the grinding system should be two．Spare mill was omitted because of the reason why the recent grinding mill has higher reliability and takes expensive construction costs．
b）Grinding stage number
It is the newest tendency to adopt one stage grinding of ball mill．Two stage grinding system，however，consisting of a rod mill and also a ball mill was considered as the best selection，because they can accept relatively bigger mill feed derived by troublesome condition due to serpentine．About ten years ago，there was tendency to install two ball mills after one rod mill but in recent mill designs it has changed to install one ball mill after one rod mill，because of difficulty to distribute the feed to ball mills properly and technical progress to manufacture large mills．Hence we decided to adopt this system of one rod mill and one ball mill．

10－2．Vibrating feeders for feeding conveyors for rod mills
Two units of vibrating feeders shall feed each rod mill system as a rule．
$750 \mathrm{mt} / \mathrm{hr} \div(2$ circuits $\times 2$ units $)=187.5 \mathrm{t}$ round up to $\rightarrow 190 \mathrm{mt} / \mathrm{h}$－unit averaging．
The maximum capacity should be 130% of the averaging one．
Then $190 \mathrm{mt} / \mathrm{h} \times 1.3=247 \mathrm{mt} / \mathrm{h}$ round up to $\rightarrow 250 \mathrm{mt} / \mathrm{h} \cdot$ unit max．
b）Selection of type．
In order to minimize number of manufacturers，we selected
YASUKAWA \＆Company \cdot KEB－32－4 950 mm －Wide $\times 1,500 \mathrm{~mm}$ Long，with 6° of slope．
Based on catalogue data，we determined motor power of $5 \mathrm{kw} \times 2$ motors per each unit．

10－3．Rod mill feeding conveyors

a）Belt speed

$$
\begin{aligned}
& Q_{m}=Q_{t} / \gamma=60 \cdot \mathrm{k}_{1} \cdot \mathrm{k}_{2} \cdot(0.9 \mathrm{~b}-0.05)^{2} \cdot \mathrm{v} \\
& \text { Where } Q_{\mathrm{t}}=190 \mathrm{mt} / \mathrm{h}, \quad \gamma=1.7 \mathrm{mt} / \mathrm{m}^{3}, \quad \mathrm{~b}=0.9 \mathrm{~m},
\end{aligned}
$$

［ $N o, 16,17,18 \& 19 B C]$
Conveyor slope $17^{\circ}, \mathrm{k}_{1}=0.87,20^{\circ}$ of both trough angle and surge sngle， $\mathrm{k} 2=0.1245$ Then the minimum belt speed v will be

$$
\begin{aligned}
\mathrm{v} & =190 \div\left\{60 \times 1.7 \times 0.87 \times 0.1245 \times(0.9 \times 0.9-0.05)^{2}\right\} \\
& =29.6 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

Taking into account of surplus $10 \%, \quad 29.6 \times 1.1=32.5 \mathrm{~m} / \mathrm{min}$ ．
Expecting of operation by one unit system，the capacity should be double．
Consequently，$v=32.5 \mathrm{~m} / \mathrm{min} \times 2=65 \mathrm{~m} / \mathrm{min}$ ．
［ $N o, 20 \& 21 B C]$
Conveyor slope $8^{\circ}, \mathrm{k}_{1}=0.97,20^{\circ}$ of both trough angle and surge sngle， $\mathrm{k}_{2}=0.1245$
Then the minimum belt speed v will be

$$
\begin{aligned}
& \mathrm{v}=380 \div\left\{60 \times 1.7 \times 0.97 \times 0.1245 \times(0.9 \times 0.9-0.05)^{2}\right\} \\
&=53.4 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

Taking into account of surplus 50% in the case of extraordinary operation， the belt speed should be $53.4 \mathrm{~m} / \mathrm{min} \times 1.5=80 \mathrm{~m} / \mathrm{min}$ ．

［No， 22 \＆23BC］

Conveyor slope $13^{\circ}, \mathrm{k}_{1}=0.92,20^{\circ}$ of both trough angle and surge angle， $\mathrm{k}_{2}=0.1245$
Then the minimum belt speed v will be

$$
\begin{aligned}
\mathrm{v} & =380 \div\left\{60 \times 1.7 \times 0.92 \times 0.1245 \times(0.9 \times 0.9-0.05)^{2}\right\} \\
& =56.3 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

By the same reason with above－said 21 \＆ 22 BC ，v should be $80 \mathrm{~m} / \mathrm{min}$ ．
b）Calculations of required powers
Conveyor power without load P_{1} ： $\mathrm{P}_{1}=0.06 \mathrm{fWv}(\mathrm{I}+\mathrm{Io}) / 367 \quad[\mathrm{kw}]$
Power by horizontal load P_{2} ：$\quad \mathrm{P}_{2}=\mathrm{f} \cdot \mathrm{Qt}(\mathrm{I}+10) / 367 \mathrm{~b} \quad[\mathrm{kw}]$
Power by vertical load P_{3} ：$\quad \mathrm{P}_{3}= \pm \mathrm{h} \cdot \mathrm{Qt}_{\mathrm{t}} / 367$ downward $-\quad[\mathrm{kw}]$
Required power $P: \quad P=P_{1}+P_{2}+P_{3} \quad[k w]$

［No，16，17， 18 \＆19 BC］

Qt $=190 \mathrm{mt} / \mathrm{h}, \mathrm{h}=1.5 \mathrm{~m}, \quad \mathrm{I}=6.5 \mathrm{~m}, \mathrm{v}=65 \mathrm{~m} / \mathrm{min}, \mathrm{b}=900 \mathrm{~mm}, \mathrm{~W}=63 \mathrm{~kg} / \mathrm{m}$
$\mathrm{P}_{1}=0.06 \times 0.03 \times 63 \times 80 \times(6.5+49) / 367=1.15 \mathrm{kw}$
$\mathrm{P}_{2}=0.03 \times 190 \times(6.5+49) \times 1 / 367=0.86 \mathrm{kw}$
$P_{3}=1.50 \times 190 \times 1 / 367=0.78 \mathrm{kw}$
$P=1.15+0.86+0.78=2.79 \mathrm{kw}$
We will use recormended power of $2.79 \mathrm{kw} / 0.8=3.49 \rightarrow 5.5 \mathrm{kw}$ ．
［ $\mathrm{N}, 20$ \＆21BC］

$$
\begin{aligned}
Q_{t} & =380 \mathrm{mt} / \mathrm{h}, \mathrm{~h}=1.5 \mathrm{~m}, \mathrm{I}=48.5 \mathrm{~m}, \mathrm{v}=80 \mathrm{~m} / \mathrm{min}, \quad \mathrm{~b}=900 \mathrm{~mm}, W=63 \mathrm{~kg} / \mathrm{m} \\
\mathrm{P}_{1} & =0.06 \times 0.03 \times 63 \times 80 \times(6.5+49) / 367=2.49 \mathrm{kw} \\
\mathrm{P}_{2} & =0.03 \times 380 \times(48.5+49) \times 1 / 367=3.03 \mathrm{kw} \\
\mathrm{P}_{3} & =1.50 \times 380 \times 1 / 367=1.55 \mathrm{kw} \\
\mathrm{P} & =2.49+3.03+1.55=7.07 \mathrm{kw}
\end{aligned}
$$

$$
\text { We will use recormended power of } 7.07 \mathrm{kw} / 0.8=8.84 \rightarrow 11 \mathrm{kw} \text {. }
$$

［ $\mathrm{No}, 22 \& 23 \mathrm{BC}]$

Qt $=380 \mathrm{mt} / \mathrm{h}, \mathrm{h}=4.4 \mathrm{~m}, \quad \mathrm{I}=18.2 \mathrm{~m}, \mathrm{v}=80 \mathrm{~m} / \mathrm{min}, \quad \mathrm{b}=900 \mathrm{~mm}, \mathrm{~W}=63 \mathrm{~kg} / \mathrm{m}$
$\mathrm{P}_{1}=0.06 \times 0.03 \times 63 \times 80 \times(18.2+49) / 367=1.71 \mathrm{kw}$
$P_{2}=0.03 \times 380 \times(18.2+49) \times 1 / 367=2.09 \mathrm{kw}$
$P_{3}=4.40 \times 380 \times 1 / 367=4.56 \mathrm{kw}$
$P=1.71+2.09+4.56=8.36 \mathrm{kw}$
We will use recommended power of $8.36 \mathrm{kw} / 0.8=10.45 \rightarrow 15 \mathrm{kw}$ ．
c）Calculations of effectve tensions

$$
\mathrm{F}_{\mathrm{p}}=6,120 \mathrm{P} / \mathrm{v}
$$

［No，16，17， 18 \＆19 BC］
$\mathrm{F}_{\mathrm{p}}=6,120 \times 2.79 / 65=263 \mathrm{~kg}$
［№， $20 \& 21 \mathrm{BC}]$
$\mathrm{F}_{\mathrm{p}}=6,120 \times 7.07 / 80=541 \mathrm{~kg}$
［№， 22 \＆23BC］
$\mathrm{Fp}_{\mathrm{p}}=6,120 \times 8.36 / 80=640 \mathrm{~kg}$
d）Calculation of effective tension $F_{2}=F_{p} / e^{\mu \theta-1}$
$[\mathrm{No}, 16,17,18 \& 19 \mathrm{BC}]$
F2 $=263 \times 0.93=245 \mathrm{~kg}$（wrap angle 190° ，take－up with screw type

［ $\mathrm{No}, 20 \& 21 \mathrm{BC}]$

$$
\text { F2 }=541 \times 0.59=319 \mathrm{~kg}\left(\text { wrap angle } 190^{\circ}, \text { take-up with heavy weight }\right)
$$

［ $N \mathrm{o}, 22$ \＆23BC］

F2 $=640 \times 0.59=378 \mathrm{~kg}$（wrap angle 190° ，take－up with heavy weight）
e）傾斜張力の計算
$\mathrm{F}_{3}=\mathrm{W}_{1} \cdot \mathrm{~L}_{1}(\sin \mathrm{~A}-\mathrm{f} \cdot \cos \mathrm{A})$
Where $\quad W_{1}$ ：belt weight［kg／m］
L1 ：length of slope［m］
A ：slope angle $\left.{ }^{\circ}\right]$
f ：revolutionary friction coefficient of roll
Belt widths and weights

Belt width mm	400	500	750	900	1,500	1,200	1,800
$\mathrm{~W}_{1} \mathrm{~kg}$	4.5	6.5	12	14	18	21	58

［ $N \mathrm{~N}, 16,17,18 \& 19 \mathrm{BC}]$
$\mathrm{F}_{3}=14 \times 6.67 \times 0.200=19 \mathrm{~kg}$
［No， $20 \& 21 \mathrm{BC}]$
$\mathrm{F}_{3}=14 \times 17.21 \times 0.117=28 \mathrm{~kg}$
［No， $22 \& 23 \mathrm{BC}]$
$\mathrm{F}_{3}=14 \times 18.72 \times 0.210=55 \mathrm{~kg}$
f）Maximum tension

$$
F_{\max }=F_{p}+F_{2}
$$

［ $\mathrm{No}, 16,17,18 \& 19 \mathrm{BC}]$

$F_{\text {max }}=263+245=508 \mathrm{~kg}$
10－4．Rod mills

10－4－1．Design concept

Rod mills were designed based on the following design concept．
Grinding method：wet open circuit
Feeder：
Feed size：
Product size：
Work index ：
New feed moisture：
Pulp density in mill：
Discharge pulp density ：
Grinding capacity：
Discharge method：
Driving method：
Grinding media tonnage ：
Revolutionary speed：
Supporting method：
Liners：
Motor：
Lubricating method：

> spout

13,000 micron 80% passing
900 micron 80% passing
$10.8 \mathrm{kwh} /$ st－grinding feed
4\％
65～75\％wt
58\％
375 dry mt／h • set
overflow through discharge trommel
side drive by spur gears with air clutch
max．； 177 mt ，averaging ； 155 mt
13． $15 \mathrm{rpm}, 62.6 \%$ of critical speed trunnions
single wave chrome \cdot molybdenum steel
open drip proof synchronous motor
gears；oil spray
trunnions ；oil pump \＆oil cups
Trunnion cooling method：reinforced water circulation

10－4－2．Required power

1］Required power per ton of ore milled Wr_{r}
$W_{r}=W_{i}(10 / \sqrt{P}-10 / \sqrt{F}) \cdot \mathrm{fr}_{r} \cdot \mathrm{fd}_{\mathrm{P}} \times 1.1 \quad[\mathrm{kwh} / \mathrm{mt}]$
where W_{i} ：work index［kwh／st］
F ：feed size 13,000 micron 80% passing \sqrt{F} ； 114
P ：product size 900 micron 80% passing $\sqrt{\mathrm{P} ; ~} 30$
fr_{r} ：reduction factor，after F．C．Bond．at reduction ratio $\mathrm{RR}=\mathrm{F} / \mathrm{P}=16$ ，
$\mathrm{fr}_{\mathrm{r}}=1.0$ ，at $\mathrm{RR}<14 \mathrm{fr}<1$ ，
$R R=14.5 \rightarrow f r=0.98$ ，
fd_{d} ：diameter factor，generally speaking，it is said that the mill capacity refers to2． $5 \sim 3$ power of mill daiameter．The Japanese cement association，however，denies this theory．

$$
\text { At } D>8^{\prime}, \quad \mathrm{fd}<1.0
$$

In our case，we determined $f_{d}=1.0$ for safety／
Hence

$$
W_{r}=10.8 \times(10 / 30-10 / 144) \times 0.98 \times 1.0 \times 1.1=2.859 \mathrm{kwh} / \mathrm{mt}
$$

2］Theoretical required power per one set of mill Wt

$$
\begin{aligned}
W_{t} & =W_{r} \times(\text { tonnage } \mathrm{mil} \text { led }) \\
& =2.859 \mathrm{kwh} / \mathrm{mt} \times 375 \mathrm{mt} / \mathrm{h} \cdot \text { set }=1,072 \mathrm{kw} / \mathrm{set}
\end{aligned}
$$

3］calibration by conditioning factor
Since actual power is influenced by such many conditions as mechanical efficiency， shock load，broken rods etc，W_{t} should be calibrated as the following．
$W_{\mathrm{a}}=W_{t} \cdot \mathrm{fm}_{\mathrm{m}} \cdot \mathrm{f}_{\mathrm{s}} \cdot \mathrm{fb}_{\mathrm{b}}$

Where	W_{a}	：instal led motor power	$[k w]$
	fm_{f}	：mechanical efficiency	0.96
	f_{s}	：shock load factor	0.90
	fb_{b}	：broken rod factor	0.95

Wa $=1,072 \mathrm{kw} /$ set $\times 1 / 0.96 \times 1 / 0.90 \times 1 / 0.95=1,306 \mathrm{kw} /$ set
Taking account of the difficulties in crushing due to the serpentin，feed size may be bigger than that of we expected here，so it is advisable to hold larger surplus for the motor power．Hence we determined to install the motor with $1,400 \mathrm{kw}$ for each rod mill．

4］Check calculations by power per rod ton KW

$$
\begin{aligned}
& \mathrm{KW}_{\mathrm{r}}=1.07 \cdot \mathrm{D}^{1 / 3} \times\left(6.3-5.4 \mathrm{~V}_{\mathrm{p}}\right) \cdot \mathrm{Cs} \times 1.1 \\
& \text { where } D \quad: m i l l \text { diameter on inside liner (unit:ft) } 13.5 f t D^{1 / 3}=2.38 \\
& V_{\mathrm{D}} \text { :ratio of grinding media to mill volume } 35 \% / 100 \\
& \text { Cs :critical speed ratio 62. 6\%/100 } \\
& \mathrm{KWr}=1.07 \times 2.38 \times(6.3-5.4 \times 0.35) \times 0.626 \times 1.1=7.74 \mathrm{kwh} / \mathrm{mt}-\mathrm{rod} \\
& \text { Tonnage of rod charged } \\
& W=\pi / 4 \cdot D^{2} \cdot L \cdot V p \cdot \rho \\
& \text { where } \pi \text { : the circular constant } 3.14 \\
& \text { D : mill diameter on inside liner (unit:ft) } 13.5 \mathrm{ft} \\
& \text { L :rod length (unit:ft) 19.0ft } \\
& \mathrm{V}_{\mathrm{p}} \text { : ratio of grinding media to mill volume } 35 \% / 100 \\
& \rho \text { : rod bulk density (unit: mt/ft }{ }^{3} \text {) } 0.172 \mathrm{mt} / \mathrm{ft}^{3} \\
& W=3.14 / 4 \times 13.5^{2} \times 19.0 \times 0.35 \times 0.172=163.6 \mathrm{mt} / \mathrm{set}
\end{aligned}
$$

Drawable power i．e．$W_{d}=K W_{r} \times W \times f b$ should be bigger than the theoretical required power per one set of mill Wt．If not，power would be consumed in vain and no use for grinding．
$\mathrm{Wd}_{\mathrm{d}}=7.74 \mathrm{kwh} / \mathrm{mt}-\mathrm{rod} \times 163.6 \mathrm{mt} / \mathrm{set} \times 0.95=1,202 \mathrm{kw}>$ Wt $=1,072 \mathrm{kw}$
Then，above result meets the requirement．
10－4－3．Rod size selection
The maximum rod size can be determined after empirical equation of F．C．Bond．
$B=\sqrt{\frac{F \cdot W i \sqrt{\frac{S}{\sqrt{D}}}}{K \cdot C s}}$

Where $\quad B$ ：the maximum size of rod or ball in inch．
F ：feed size 13,000 micron 80% passing
Wi_{K} ：work index $10.8 \mathrm{kwh} / \mathrm{st}$
K ：empirical factors rod；300，ball； 200
C_{s} ：critical speed ratio 62.6%
S ：actual specific gravity of the ore 2.7
D ：mill diameter on inside liner（unit：ft） 13.5 ft
Then \quad в $=\sqrt{\frac{13,000 \times 10.8 \sqrt{\frac{2.7}{\sqrt{13.5}}}}{300 \times 62.6}}=2.54 \mathrm{in}$

In the actual operation，especially in the case where feed size may drift into coarser size，it should take $20 \sim 30 \%$ of safety factor．

So $2.54 \times 1.3=3$ ． 3 in rounded up to $\rightarrow 3.5 \mathrm{in}$ ．
Hence，recormended rod size distribution can be estimated after table of Allis－Chalmers as the following．

Rod dia．	$\%$	estimation	actual charge＊
$3-1 / 2$ in	20	31 mt	62 mt
3	33	51	62
$2-1 / 2$	21	33	53
2	26	40	-
Tot	100	155	177

＊Tonnage of initial charge will be the maximum volume in order to check the mill capacity．
Cf．Maximum rod size and initial size distribution to be charged（\％）

Rod dia．in	5	$4-1 / 2$	4	$3-1 / 2$	3	$3-1 / 2$
5	18	-	-	-	-	-
$4-1 / 2$	22	20	-	-	-	-
4	19	23	20	-	-	-
$3-1 / 2$	14	20	27	20	-	-
3	11	15	21	33	31	-
$2-1 / 2$	7	10	15	21	39	34
2	9	12	17	26	30	66
Tot	100	100	100	100	100	100

10－4－5．Estimated grinding media consumption

1］Grinding rods
Rod consumption may be estimated based on laboratory tests and exper iences of other porphyry copper mines．
rod： $400 \mathrm{~g} / \mathrm{mt}, \quad 189 \mathrm{mt} /$ month
Examples of other porphyry copper mines．
Gibraltar（Canada，B．C．） $13^{\prime}-1 / 2 \times 20^{\prime} \times 3: 239 \mathrm{~g} / \mathrm{t}$

```
Marcopper (Philippines) \(13^{\prime}-1 / 2 \times 20^{\prime} \times 2: 425 \mathrm{~g} / \mathrm{t}\)
Butte (USA, Montana) \(9^{\prime} \times 12^{\prime} \times 6\) : \(149 \mathrm{~g} / \mathrm{t}\)
Palabora(Transvaal) \(12^{\prime} \times 16^{\prime} \times 5: \quad 160 \mathrm{~g} / \mathrm{t}\)
```


2］Liners

Liner consumptions will vary depending on liner materials，mill speed，mill diameter， grinding medium size，loading conditions，ore hardness，pH of grinding water and shape of liners etc．After BECHTEL \＆Company，averaging rates of liner consumptions for common rod $\mathrm{mill} / \mathrm{ball} \mathrm{mill}$ grinding operations range in the extent of $15 \sim 30 \mathrm{lb} / \mathrm{h} / 1,000 \mathrm{sq} \mathrm{ft} \cdot$ inner mill surface area．This means that we can estimate liner consumptions of $0.015 \sim 0.3 \mathrm{lb} / \mathrm{kwh}$ or 17 $\sim 340 \mathrm{~g} /$ ．In the case of white cast iron，however，much higher consumptions were reported and high manganese steel liners range between $10 \sim 35 \mathrm{~g} / \mathrm{mt}$ only．Data obtained in other copper mills are shown in the following．

| Ray | $: 10^{\prime} \times 13^{\prime}$ | $25 \mathrm{~g} / \mathrm{t}$ |
| :--- | :--- | :--- | :--- |
| San Manuel | $: 10^{\prime} \times 13^{\prime}$ | $30 \mathrm{~g} / \mathrm{t}$ |

On the I iner material，chromium－molybdenum anti－abrasion steel is the most reliable． Since Ni －hard is brittle，it is not suitable for rod mill liner．At present，rubber rod mill liners are not available for large diameter rod mills．

Consequently，we estimate about 10 months of the liner life，this value corresponds to $34 \mathrm{~g} / \mathrm{t}$－ore milled．

10－5．Ball mills
10－5－1．Design concept
Primary ball mill design was done on the bases of the following conditions．
Grinding method：wet closed circuit with cyclones
Feeder：
Feed size：
Feeder：
Feed size：
Product size ：
Work index：
New feed pulp density
Pulp density in mill：
Grinding capacity：
Discharge method：
Driving method：
Grinding media tonnage ：
Revolutionary speed ：
Supporting method：
Liners：
Motor：
Lubricating method ：
spout
Grinding method：wet open circuit
spout
900 micron 80% passing
135 micron 80% passing
$10.8 \mathrm{kwh} / \mathrm{st}-\mathrm{gr}$ inding feed
75\％wt
65～72\％wt
375 dry mt／h • set
overflow through discharge trommel
side drive by helical gears with air clutch
max．； 226 mt
$13.58 \mathrm{rpm}, 70.5 \%$ of critical speed
both trunnions
Skega F－type rubber liners
open drip proof synchronous motor
gears；oil spray
trunnions ；oil pump \＆oil cups
Trunnion cooling method：reinforced water circulation

Circulating load ratio：350\％

10－5－2．Required power

1］Required power per ton of ore milled Wr
$W_{r}=W_{i}(10 / \sqrt{P}-10 / \sqrt{F}) \cdot \mathrm{fr}_{r} \cdot \mathrm{fd} \times 1.1 \quad[\mathrm{kwh} / \mathrm{mt}]$
where W_{i} ：work index［kwh／st］
F ：feed size 900 micron 80% passing $\sqrt{\mathrm{F}} ; 30.0$
P ：product size 135 micron 80% passing；$\sqrt{\mathrm{P} ; ~} 11.6$
fr_{r} ：reduction factor， $\mathrm{fr}=1.0$ ，
$\mathrm{f}_{\mathrm{d}}: \mathrm{fd}=1.0$ for safety．
Then $\quad W_{r}=10.8 \times(10 / 11.6-10 / 30) \times 1.0 \times 1.0 \times 1.1=6.28 \mathrm{kwh} / \mathrm{mt}$

2］Theoretical required power per one set of mill Wt
$W_{t}=W_{r} \times$（tonnage milled）
$=6.28 \mathrm{kwh} / \mathrm{mt} \times 375 \mathrm{mt} / \mathrm{h} \cdot$ set $=2,355 \mathrm{kw} / \mathrm{set}$

3］calibration by conditioning factor
Since actual power is influenced by mechanical efficiency，
Wt should be calibrated as the following．

$$
W_{a}=W_{t} \cdot f_{m}
$$

Where $\quad \mathrm{Wa}$ ：installed motor power［kw］
fm ：mechanical efficiency 0.96
$W_{a}=2,355 \mathrm{kw} /$ set $\times 1 / 0.96=2,453 \mathrm{kw} /$ set round up to $2,500 \mathrm{kw}$ ．

4］Check calculations by power per ball ton $\mathrm{KW} \mathrm{r}_{\mathrm{r}}$
$K W_{r}=3.1 \cdot D^{0.3} \times\left(3.2-3 V_{p}\right) \cdot C s \times\left(1-0.1 / 2^{9-10 s_{s}}\right)$
where $\quad D \quad: m i l l$ diameter on inside liner（unit：ft） $16 \mathrm{ft} \mathrm{D}^{1 / 3}=3.68$
V_{p} ：ratio of grinding media to mill volume $38 \% / 100$
Cs ：critical speed ratio 70．5\％／100
$\mathrm{KWr}_{r}=3.1 \times 3.68 \times(3.2-3 \times 0.38) \times 0.705 \times(1-0.1 / 3.86)$
$=16.14 \mathrm{kw} / \mathrm{t}-\mathrm{ball}$ charged
Tonnage of ball charged
$W=\pi / 4 \cdot D^{2} \cdot L \cdot V p \cdot \rho$
where π ：the circular constant 3.14
D ：mill diameter on inside liner（unit：ft） 16.0 ft
L ：mill liner inside length（unit：ft） 23.0 ft
V_{p} ：ratio of grinding media to mill volume $38 \% / 100$
ρ ：rod bulk density（unit： $\mathrm{mt} / \mathrm{ft}^{3}$ ） $0.172 \mathrm{mt} / \mathrm{ft}^{3}$
$\mathrm{W}=3.14 / 4 \times 16.0^{2} \times 23.0 \times 0.38 \times 0.126=221.4 \mathrm{mt} / \mathrm{set}$
Drawable power i．e．$W_{d}=K W_{r} \times W \times f b$ should be bigger than the theoretical required power per one set of mill Wt．If not，power would be consumed in vain and no use for grinding．

Wd $=16.14 \mathrm{kwh} / \mathrm{mt}-\mathrm{bal\mid} \times 221.4 \mathrm{mt} /$ set $=3,567 \mathrm{kw}>\mathrm{Wt}=2,355 \mathrm{kw}$
Then，above result meets the requirement．

10－5－3．Selection of ball size

The maximum ball size can be determined after empirical equation of F．C．Bond．

$$
B=\sqrt{\frac{F \cdot W i \sqrt{\frac{S}{\sqrt{D}}}}{K \cdot C s}}
$$

Where $\quad \mathrm{B}$ ：the maximum size of rod or ball in inch．
F ：feed size 900 micron 80% passing
W_{i} ：work index $10.8 \mathrm{kwh} / \mathrm{st}$
K ：empirical factors rod；300，ball； 200
C_{s} ：critical speed ratio $\quad 70.5 \%$
S ：actual specific gravity of the ore 2.7
D ：mill diameter on inside liner（unit：ft） 16.0 ft
Then $\quad \mathrm{B}=\sqrt{\frac{900 \times 10.8 \sqrt{\frac{2.7}{\sqrt{16.0}}}}{200 \times 62.6}}=0.75 \mathrm{in}$
In the actual operation，especially in the case where feed size may drift into coarser size，it should take $2.0 \sim 3.0$ of safety factor．

So $0.75 \times 2.5=1.872$ rounded up to $\rightarrow 2.0 \mathrm{in}$ ．
Hence，reconmended rod size distribution can be estimated after table of Allis－Chalmers as the following．

2 in	40%	$@ 90 \mathrm{mt}$
$1-1 / 2$	45	$@ 100$
1	15	$@ 30$
Tot	100	$@ 220$

10－5－5．Ball consumption

Ball consumption can be estimated actual performances in the pilot plant tests As the following．

Ball： $450 \mathrm{~g} / \mathrm{t}, \quad 213 \mathrm{mt} / \mathrm{month}$
Operating data of other concentrators show $266 \sim 645 \mathrm{~g} / \mathrm{t}$ in the case of two stage grinding by rod mill and ball mill for porphyry copper ores．

10－5－6．Estimation of liner consumption
The rate of I iner consumption is highly related to the mill revolutionary speed．If the mill speed exceeds beyond $80 \sim 82 \%$ of the critical speed，liner consumption proceeds to such extent where the rubber liners are not economical at present．In the case of the Mamut MiII， however，the mill speed remains in 70.5% of the critical one，no problem will be expected．

Based on experiences of the liner manufacturer，liner lives will be expected as 12,000 $\sim 18,000$ hours of operation in the case where ball size ranges $2 \sim 3$ inches and the mill speed is 70.5% of the critical one．The lives of lifter bars are shorter than those of shell plates in general and expected to be about one year．In the case the lifter bars are symmetry and can be reversible，the lives will be nearly double by reversion．
Liner weights
1］Shell platesWeights of shell plates are estimated by the following equation．

$$
\text { Ws }=N \cdot A \cdot L \cdot \rho / 1,000
$$

where Ws ：weight of shell plates ［kg］
N ：number of shell plates in a set of mill
A ：cross sectional area of a shell plate ［ cm^{2} ］
L ：effective length of inside shell ［cm］
ρ ：specific gravity of rubber（ 1.0 approximately）Then Ws $=40 \times(20.2 \times 5.0) \times 701 \times 1 / 1,000=2,832 \mathrm{~kg} / \mathrm{set}$
2］Lifter bars
$W_{s}=N \cdot A \cdot L \cdot \rho / 1,000$
where Wsl ：weight of lifter bars ［kg］
N ：number of the lifter bars in a set of mill
A ：cross sectional area of a lifter bar ［ cm^{2} ］
L ：effective length of inside shell ［cm］
ρ ：specific gravity of rubber（ 1.0 approximately）
then $W_{s l}=40 \times 174 \times 701 \times 1 / 1,000=4,963 \mathrm{~kg} / \mathrm{set}$
3］Head plate I iners
$W_{h}=2\left\{\pi / 4 \cdot\left(D^{2}-d^{2}\right)-1 / 2 \cdot N \cdot w \cdot(D-d)\right\} h_{s} / 1,000$
where W_{h} ：weight of head plate liners ［kg］
π ：circular constant
D ：diameter in side liner ［cm］
d ：diameter of inside trunnion ［cm］
w ：width of lifter bar ［cm］
h ：thickness of head plate ［cm］
N ：number of the head plate liners in a set of mill
Then $=2 \times\{3.14 / 4 \times$

4］Head Iiter bars
$W_{h l}=w(D-d) N \cdot h ı=12.5(488-144) \times 24 \times 12=1,238 \mathrm{~kg} / \mathrm{set}$ where $\mathrm{w}, \mathrm{D}, \mathrm{d}, \mathrm{N}$ are dittou with 3］．
hl ：height of the head Iifter bar［cm］
5］Total weight of the plate liners and lifter bars
$W=W_{s}+W_{s} I+W_{h}+W_{h l}$

$$
=2,832+4,963+5,953+1,238=14,986 \mathrm{~kg} / \mathrm{set}
$$

6］Liner consumption per ton milled
Assuming 15， 000 hours of operation as averaging life，apparent rubber liner consumption per ton milled will be estimated as the following．
$14,986 \mathrm{~kg} / \mathrm{set} \times 1,000 \mathrm{~g} / \mathrm{kg} \times 1 /(15,000 \mathrm{~h} \times 375 \mathrm{t} / \mathrm{h} \cdot$ set $)=2.6 \mathrm{~g} / \mathrm{t}$
Since scrap ration is averaging $30 \sim 35 \%$ ，actual liner consumption per ton milled will be about $2.0 \mathrm{~g} /$ ton．

10－6．Regrinding ball mill

10－6－1．Design concept
Regrinding ball mill design was done on the bases of the following conditions．

Grinding method ：
Feeder ：
Feed size：
Product size ：
Work index：
New feed pulp density
Pulp density in mill：
Grinding capacity ：
Discharge method ：
Driving method：
Grinding media tonnage ：
Revolutionary speed：
Supporting method：
Liners：
Motor：
Lubricating method：

Trunnion cooling method：reinforced water circulation
Circulating load ratio：150\％

10－6－2．Power requirement
1］Required power per ton of ore milled Wr
$W_{r}=W_{i}(10 / \sqrt{\mathrm{P}}-10 / \sqrt{\mathrm{F}}) \cdot \mathrm{fr}_{\mathrm{r}} \cdot \mathrm{fd}_{\mathrm{d}} \times 1.1 \quad[\mathrm{kwh} / \mathrm{mt}]$
where W_{i} ：work index 11.0 ［kwh／st］
F ：feed size 130 micron 80% passing $\sqrt{\mathrm{F}} ; 11.4$
P ：product size 50 micron 80% passing；$\sqrt{P} ; 7.1$
K_{1} ：reduction factor， $\mathrm{K}_{1}=1.11$
K_{2} ：fine grinding factor $K_{2}=(P+10.3) / 1.145 P=1.05$
Then $\quad W_{r}=W_{r}=11.0 \times(10 / 7.1-10 / 11.4) \times 1.11 \times 1.05 \times 1.1=7.57 \mathrm{kwh} / \mathrm{mt}$

2］Theoretical total power requirement for a set of mill Wt
Tonnage to be ground by the regrinding mill
Assuming 150% of copper content in the new feed ore is ground by the regr inding mill and this grade of the ore to be ground is $15 \% \mathrm{Cu}$ ，processing rate of the grinding mill［F］ Is determined as follows．

$$
\begin{aligned}
\mathrm{F} & =750 \mathrm{mt} / \mathrm{h} \times 0.59 \% / 100 \times 150 \% / 100 \times 1 / 15 \% / 100=44.25 \mathrm{mt} / \mathrm{h} \\
\mathrm{~W}_{\mathrm{t}} & =\mathrm{Wr}_{\mathrm{r}} \cdot \mathrm{~F} \\
& =7.57 \mathrm{kwh} / \mathrm{mt} \times 44.25 \mathrm{mt} / \mathrm{h}=335 \mathrm{kw}
\end{aligned}
$$

3］Calibration by conditioning factor
Since actual power is influenced by mechanical efficiency，
Wt should be calibrated as the following．

$$
W_{\mathrm{a}}=W_{t} \cdot f_{\mathrm{m}}
$$

Where $\quad \mathrm{Wa}$ ：installed motor power［kw］
fm ：mechanical efficiency 0.96
$W_{a}=335 \mathrm{kw} \times 1 / 0.96 \times 1.20=418 \mathrm{kw} /$ set round up to 420 kw ．

4］Check calculations by power per ball ton KW_{r}

$$
K W_{r}=3.1 \cdot D^{0.3} \times\left(3.2-3 V_{p}\right) \cdot C s \times\left(1-0.1 / 2^{9-10 S_{s}}\right)
$$

where $\quad D \quad$ ：mill diameter on inside liner（unit：ft） $10 \mathrm{ft} D^{1 / 3}=2.16$
V_{p} ：ratio of grinding media to mill volume $38 \% / 100$
Cs ：critical speed ratio 74．0\％／100
$\mathrm{KWr}=3.1 \times 3.68 \times(3.2-3 \times 0.38) \times 0.74 \times(1-0.1 / 3.03)$
$=9.87 \mathrm{kw} / \mathrm{t}-\mathrm{ball}$ charged
Tonnage of ball charged
$W=\pi / 4 \cdot D^{2} \cdot L \cdot V p \cdot \rho$
where π ：the circular constant 3.14
D ：mill diameter on inside liner（unit：ft） 10.0 ft
L ：mill liner inside length（unit：ft） 11.0 ft
V_{p} ：ratio of grinding media to mill volume $38 \% / 100$
ρ ：rod bulk density（unit：mt／ft ${ }^{3}$ ） $0.126 \mathrm{mt} / \mathrm{ft}^{3}$
$W=3.14 / 4 \times 10.0^{2} \times 11.0 \times 0.38 \times 0.126=41.3 \mathrm{mt}$
Drawable power i．e． $\mathrm{W}_{\mathrm{d}}=\mathrm{KWr} \times \mathrm{W} \times \mathrm{fb}$ should be bigger than the theoretical required power per one set of mill Wt．If not，power would be consumed in vain and no use for grinding．
$\mathrm{Wd}=9.87 \mathrm{kwh} / \mathrm{mt}-\mathrm{bal\mid} \times 41.3 \mathrm{mt}=407.6 \mathrm{kw}>\mathrm{Wt}=355 \mathrm{kw}$
Then，above result meets the requirement．
10－6－3．Selection of ball size
The empirical equation after F．C．Bond is not applicable for the regrinding mill，so we select $1-1 / 4$ in bal based on ouw own experiences．

After T．E．Norman，ball consumption for copper ores can be given as averaging $0.178 \mathrm{lb} / \mathrm{kwh}$ ．
Then $0.178 \mathrm{kwh} / \mathrm{kwh} \times 335 \mathrm{kwh} \times 450 \mathrm{~g} / \mathrm{lb} \div 44.24 \mathrm{mt} / \mathrm{h}=606 \mathrm{~g} / \mathrm{mt}$
On the other hand，generally speaking，the ball consumption is said to be $1.26 \mathrm{lb} / \mathrm{st}$ for non－ferrous ores．i．e． $1.26 \mathrm{lb} / \mathrm{st} \times 450 \mathrm{~g} / \mathrm{lb} \times 1.1 \mathrm{mt} / \mathrm{st}=623 \mathrm{~g} / \mathrm{mt}$ ．Any way the ball consumption of the regrinding mill can be estimated as $600 \sim 650 \mathrm{~g} / \mathrm{mt}$ ．

10－7．Primary grindinf cyclones

10－7－1．Material balance

The fol lowing assumptions were made．
Number of grinding circuit systems：

Tonnage of new feed：$\quad 375 \mathrm{mt} / \mathrm{h}$－system
Circulating load ratio：350\％
Pulp densities：underflow；72\％wt．，49\％vol．，Sp．Gr． 1.829
overflow； 35% wt．， 17% vol．，Sp．Gr． 1.283
feed；$\quad 58 \%$ wt．， 34% vol．，Sp．Gr． 1.580

10－7－2．Selection of cyclone size
To minimize installation area，the maximum available type，namely KREBS 26Bmodelwas selected．Standard diameters are feed inlet $10^{\prime \prime}$ ，overflow finder $12^{\prime \prime}$ ，and apex $4^{\prime \prime} 1 / 2$ ， respectively．

Capacity per one set Q and required numbers of cyclones N can be estimated after chart of the Krebs under the above said conditions as the following．

$$
\begin{aligned}
Q & =210 \mathrm{st} / \mathrm{h} \times 1 / 1.1 \mathrm{mt} / \mathrm{st} \times 2.7 / 2.8 \\
& =185 \mathrm{mt} / \mathrm{h} \cdot \mathrm{set} \\
\mathrm{~N} & =1,313 \mathrm{mt} / \mathrm{h} \div 185 \mathrm{mt} / \mathrm{h} \cdot \mathrm{set} \\
& =7.0 \rightarrow 7 \mathrm{sets}
\end{aligned}
$$

Then，eight sets of 26 B model including stand－by，will meet the requirement treating dry tonnage of $313 \mathrm{mt} / \mathrm{h}$ ．

Inlet pressure was selected to be $0.42 \mathrm{~kg} / \mathrm{cm}^{2}$ in order to minimize abrasion problems．
Cyclones should be installed radially around manifolds to keep uniform distribution of the feed pulp．

APEX CAPACITY CHART FOR 26B CYCLONE

10－7－3．Design of underflow launders

Slope of underflow launders can be calculated the following empirical equation after Caldecott

$$
\begin{aligned}
& \mathrm{G}=(W+12) / \mathrm{W} \\
& \mathrm{P}=100 \mathrm{~W} /(W+1) \\
& \text { Where } \mathrm{G} \text { : slope of launder }
\end{aligned}
$$

W：weight ratio of water to solid
Since weight pulp density of the underflow is 72% ，so $P=100-72=28 \%$
Then $W=28 / 72=0.388$ ，
Hence $G=(0.388+12) / 0.388=31.9 \%$
Recommended slope by KREBS ENGINEERING is $4-3 / 4$ in per 1 ft ，namely 39% ．
Inner surface of the launder should be LINED by rubber．

10－7－4．Estimated particle size distributions
Assuming circulating load ratio 350\％and solid specific gravity 2．7，estimated particle size distributions of primary cyclone products are shown in the following．

Tyler mesh	Feed		Underflow		Overflow	
	Disr＇tion	Σ Disr＇tion	Disr＇tion	Σ Disr＇tion	Disr＇tion	Σ Disr＇tion
48	45.0%	45.0%	56.2%	56.2%	2.0%	2.0%
+65	12.8	57.8	14.5	70.7	6.0	8.0
+100	10.6	68.4	9.4	80.1	14.0	22.0
+150	7.1	75.5	5.2	85.3	13.0	35.0
+200	5.6	81.1	3.7	89.0	12.0	47.0
+325	2.1	83.2	1.3	90.3	5.0	52.0
-325	16.8	100.0	9.7	100.0	48.0	100.0

10－8．Regrinding cyclones

10－8－1．Material balance
Feed of the regrinding cyclone will be concentrate of secondary roughers and tailing of secondary cleaner．The next conditions were assumed based on operational conditions of the regrinding mill and material balance in flotation circuits．

Feed character istics	2RC	2CT	underflow	overflow	Total feed
Dry tonnage mt／h	15.9	28.7	66.9	44.6	111.5
Pulp density \％Wt	25.0	18.0	75.0	19.8	34.8
Wet tonnage mt／h	63.6	159.4	89.2	225.3	267.6
Water contained mt／h	47.7	130.3	22.3	180.7	156.1
Water supplied mt／h			2.7		

Assuming specific gravity of the feed pulp as 1.46 ，flow rate of the feed Q_{f} will be $267.6 \mathrm{mt} / \mathrm{h} \div 1.46 \mathrm{mt} / \mathrm{m}^{3}=183.3 \mathrm{~m}^{3} / \mathrm{h}$

10－8－2．Required number of regrinding cyclones

Changing the feed flow rate by ratio of 1 US gal $=3.8 \mathrm{l}$ and $1 \mathrm{~h}=60 \mathrm{~min}$ ，
$183.3 \mathrm{~m}^{3} / \mathrm{h} \div\left(60 \mathrm{~min} / \mathrm{h} \times 3.8 \mathrm{l} / \mathrm{US} \mathrm{gal} \times 1000 \mathrm{\ell} / \mathrm{m}^{3}\right)=803.9 \mathrm{US} \mathrm{gal} / \mathrm{min}$
Assuming to adopt D15Bcyclones and their inlet pressure as $10 \mathrm{psi}=0.7 \mathrm{~kg} / \mathrm{cm}^{2}$ ，capacity of one set is estimated to be 400 US gal／min／set after below chart of Krebs Engineers．

Then required number will be 803.9 US gal／min $\div 400$ US gal／min $\fallingdotseq 2$ sets．
Installed number should be 3 sets taking account of variation of feed grade and stand－by
for repairing．

10－9．Primary cycllone feed pumps

10－9－1 Design concept

In order to minimize construction costs，we selected one pump for one circuit and to save maintenance costs one stage larger pump than its normal capacity．At the start－up operation we will use high chromium steel as lining material and rubber lining at later operation，to avoid troubles due to extraordinary hard materials intermingled in feed pulp such as bolts， nuts and tools and so on．Number of installation Should be three，including common stand－by．

Flow rate：$\quad 30.53 \mathrm{~m}^{3} / \mathrm{min}$－set
Pulp density：58\％wt
Specific gravity of pulp： 1.58
Piping in this circuit is shown in right figure．
Inlet pressure： $6 \mathrm{psi}=0.42 \mathrm{~kg} / \mathrm{cm}^{2}$
Actual head：$(13-2)+4.2 / 1.58=13.66 \mathrm{mH}$
Friction loss equivalent lengths
$20 \mathrm{~B}-14 \mathrm{~B}$ reducer 1 set： $9 \mathrm{~m} \times 1=9.0 \mathrm{~m}$
45B－20B reducer 1set： $10 \mathrm{~m} \times 1=10$ ． 0 m
20B elbows $\quad 4$ sets： $13 \mathrm{~m} \times 4=52.0 \mathrm{~m}$

$10 B$ valve $\quad 1$ set： $1.2 \mathrm{~m} \times 1=1.2 \mathrm{~m}$
45B－20B sudden contraction 1 set： $7.0 \mathrm{~m} \times 1=7$ ． 0 m
10B right elbow 1set：10． $0 \mathrm{~m} \times 1=10$ ． 0 m
Sub－total
89． 2 m

Total pipe length＝actual pipe length＋total friction loss equivalent lengths $=45 m+89.2 m=134.2 \mathrm{~m}$

Flow velocity $=$ flow rate／sectional area of pipe
$v=(30.6 \times 4) /(60 \times 3.14 \times 0.4782)=2.845 \mathrm{~m} / \mathrm{sec}$
specification of pipe
material：$\quad X$－52
outer diameter： 508 mm
thickness： 15 mm

inner diameter：478mm

10－9－2．Calculations of friction loss after Darcy＇s equation
$h s=f \cdot \frac{L \cdot V^{2}}{D \cdot 2 g}$

Where hs ：friction head loss
［m］
L ：pipe length［m］
D ：pipe inner diameter［m］
V ：averaging velocity［m／sec］
g ：gravitational acceleration［m／ $\left.\mathrm{sec}^{2}\right]$
f ：friction loss coefficient
then

$$
\begin{aligned}
\text { hs } & =0.02 \times \frac{134.2 \times 2.845^{2}}{0.478 \times 2 \times 9.8}=2.31 \mathrm{~m} \\
\text { Total head } & =\text { actual head }+ \text { head loss } \\
& =13.66 \mathrm{~m}+2.31 \mathrm{~m}=15.97 \mathrm{~m}
\end{aligned}
$$

This value of the total head should be calibrated by application of calibration factor in the case of slurry pumping．

Final total head $=15.97 \mathrm{~m} / 0.815=19.60 \mathrm{~m}$

10－9－3．Calculations of pump revolutionary speed and required power
1］pump revolutionary speed N_{2}

$$
N_{2}=N_{1} \sqrt{\frac{H_{2}}{H_{1}}}
$$

Where N_{1} ：standard speed at standard head
［rpm］
H_{1} ：standard delivery head
H_{2} ：required delivery head
In the case of Warman $16 / 14$ pump，$\quad \mathrm{N}_{1}=335 \mathrm{rpm}$ at $\mathrm{H}_{1}=22.6 \mathrm{mH}$
Then
$\mathrm{N}_{2}=335 \times \sqrt{19.60 / 22.60}=312 \mathrm{rpm}$

2］Required shaft power P_{2}
$\mathrm{P}_{2}=\mathrm{P}_{1}\left(\mathrm{~N}_{2} / \mathrm{N}_{1}\right)^{3}=237 \times(312 / 335)^{3}=191.4 \mathrm{kw}$
Where P_{1} ：standard shaft power at standard delivery head
N_{1} ：standard revolutionary speed
N2 ：required revolutionary speed［rpm］

3］Installed power P
$\mathrm{P}=$（required shaft power）／（pump efficiency \times mechanical efficiency of V －belt \times safety factor）

$$
=191.4 \times 1 / 0.72 \times 1 / 0.95 \times 1.2=335.7 \mathrm{kw} \rightarrow \text { round up to } 350 \mathrm{kw} \text {. }
$$

10－10．Regrinding cyclone feed pumps
10－10－1．Design concept
Same design concept will be applied with the pr imary grinding．Piping material，however， should be used stainless steel pipe STPG38 to keep anti－abrasion and anti－corrosion．

> Flow rate:

3． $826 \mathrm{~m}^{3} / \mathrm{min} \cdot$ set
Pulp density：
34． $8 \% \mathrm{Wt}$
Pulp specific gravity： 1.383
Cyclone inlet pressure： $10 \mathrm{psi}=0.7 \mathrm{~kg} / \mathrm{cm}^{2}$
Total pipe length＝actual pipe length＋total friction loss equivalent lengths $=45 \mathrm{~m}+89.2 \mathrm{~m}=134.2 \mathrm{~m}$
Flow velocity $\mathrm{v}=(3.826 \times 4) /(60 \times 3.14 \times 0.191)=2.845 \mathrm{~m} / \mathrm{sec}$
Pipe specification：material：STPG38，inner diameter：190．9mm
10－10－2．Calculations of friction loss and others
Calculations were made by same methods with 10－9 and their results are shown in the table SPECIFICATION OF SLURRY PUMPS including the results for other pumps．

10－11．Utilities

10－11－1．Gr inding water
1］Water for rod mills
New feed tonnage ：$\quad 375 \mathrm{mt} / \mathrm{h} \cdot \mathrm{set} \times 2 \mathrm{set}=750 \mathrm{mt} / \mathrm{h}$
Moisture of new feed：4\％
Pulp density in mill：70\％Wt aver．，75\％Wt max．
Pulp density cyclone feed ：58\％Wt
Water quantity in new feed：Qf
The following equation is given by definition of the pulp density and moisture． Qf $/(375+$ Qf $) \times 100=4.0$
Then $\quad Q_{f}=(375 \times 4.0) /(100-4.0)=15.6 \mathrm{mt} / \mathrm{h} \cdot$ set
By the same way，water quantity of pulp in mill：Qr is given by the following equation．

$$
\text { Qr }=375 \times(100-70) / 70=160.7 \mathrm{t} / \mathrm{h} \cdot \text { set }
$$

Then $\quad Q=Q_{r}-Q_{f}=160.7-15.6=145.1 \mathrm{mt} / \mathrm{h} \cdot$ set should be added at each rod Mill spout．

At each discharge box of rod mill，water content of pulp to be classified can be estimated as follows．
$Q_{d}=375 \times(100-58) / 58=271.5 \mathrm{mt} / \mathrm{h} \cdot$ set
Hence $\quad Q_{d}-Q_{r}=110.8 \mathrm{mt} / \mathrm{h} \cdot$ set will be further needed at each discharge box．

2］Water for primary ball mills

New feed tonnage：$\quad 375 \mathrm{mt} / \mathrm{h} \cdot$ set $\times 2 \mathrm{set}=750 \mathrm{mt} / \mathrm{h}$
Circulating load ratio：350\％
Ball mill feed tonnage： $375 \mathrm{mt} / \mathrm{h} \times 350 / 100=1,313 \mathrm{mt} / \mathrm{h}$
Pulp density of new feed：74．0\％
Pulp density in mill：$\quad 72 \%$ averaging

Pulp density cyclone feed ：58\％Wt

Water quantity in new feed：Qf
The following equation is given by definition of the pulp density and moisture．

$$
Q_{r}=1,313 \mathrm{t} / \mathrm{h} \times(100-74) / 70=461.3 \mathrm{t} / \mathrm{h} \cdot \mathrm{set}
$$

Similarly water quantity of pulp in mill：Qm

$$
Q_{m}=1,313 \mathrm{t} / \mathrm{h} \times(100-72) / 72=495.5 \mathrm{t} / \mathrm{h} \cdot \mathrm{set}
$$

Then $\quad Q=Q_{d}-Q_{m}=495.5-461.3=34.2 \mathrm{mt} / \mathrm{h} \cdot$ set should be added at each ball mill spout．

At each discharge box of ball mill，water content of pulp to be classified can be estimated as follows．

$$
Q_{d}=1,313 \times(100-58) / 58=1,222.3 \mathrm{mt} / \mathrm{h} \cdot \operatorname{set}
$$

Hence $\quad Q_{d}-Q_{m}=1,222.3-495.5=726.8 \mathrm{mt} / \mathrm{h} \cdot$ set will be further needed at each discharge box．

3］Water for regrinding ball mill
After table in section 10－8－4， $2.7 \mathrm{t} / \mathrm{h}$ of water should be added at spout of regr inding mill．Besides that water addition through pipe lines of 6B or 150A for discharge box and intake tank of cyclone $0 / F$ pump will be necessary for every start－up and shut down time of the regrinding cyclone feed and $0 / F$ pumps．

4］Cooling water for each trunnion
$50 \mathrm{l} / \mathrm{min} \cdot$ set is recommended to add at each mill in order to cool trunnion bear ingsby the mill manufacturer．So， $50 \mathrm{l} / \mathrm{min} \cdot \operatorname{set} \times 5$ sets $=250 \mathrm{\ell} / \mathrm{min} / 5$ sets $=15 \mathrm{t} / \mathrm{h}$ of fresh water will be needed independently for cooling．

10－11－2．Compressed air
1］Air clutches
Assuming A equals air consumption at each time of $0 \mathrm{~N}-0 \mathrm{FF}$ ，
$A=V_{1}+V_{2}$
where V_{1} ：Volume of clutch element in
V2 ：Inner volume of piping from electromagnetic valve to the clutch in

Assuming pipe size is 1 inch hereafter the electromagnetic valve，its volume V_{2} is 6 litres．

Then each consumption of the air clutch is shown as follows．

Type of air clutch	V1（l）＊	V2（l）＊	A（l）＊
D42VC1200	27	6	33
D51VC1600	66	6	72
S42VC650	6.5	6	12.5

＊The air volume is at gauge pressure of $7.0 \mathrm{~kg} / \mathrm{cm}^{2}$
As capacity of the air compressor，it is requested to select the maximum consumption rate in the case of inching of the $16^{\prime} \times 23^{\prime}$ ball mill．

From above table．the air consumption at free state of the D51VC1600 model in each time of inching，will be

$$
72 \ell \times(7+1.03) / 1.03=561.3 \ell
$$

If inching of the mill is carried at the rate of 4 times per a minute and consumed air should be supplied in 2 minutes，the capacity of compressor will be $0.5613 \mathrm{~m}^{3} \times 4 \times 1 / 2 \min \times 1 / 0.6=1.87 \mathrm{~m}^{3} / \mathrm{min} \quad$（Piston displacement）
where 0.6 is volumetric efficiency of the air compressor at sea level．
After manufacturer＇s catalogue，for example，HITACHI VHC WS－W type of 15 kw ，
its piston displacement $3.08 \mathrm{~m}^{3} / \mathrm{min}$ is selected，taking account of altitude of mill location to be installed．

Since lower limit of the air pressure for the clutches is $5.5 \mathrm{~kg} / \mathrm{cm}^{2}$（G），
it is recormended to keep $6.0 \mathrm{~kg} / \mathrm{cm}^{2}$ of minimum pressure at air tank of compressor side．
Then，$\quad P_{2}(B+C)=P_{1} \cdot C$ $\mathrm{C}=\mathrm{V}+200 \mathrm{~N}$
where P_{1} ：Pressure before start up of the mill in
$\left[\mathrm{kg} / \mathrm{cm}^{2}\right]$
P_{2} ：Pressure after start up of the mill in
$\left[\mathrm{kg} / \mathrm{cm}^{2}\right]$
B ：Volume of clutch element in［८］
C ：Total volume of all air tanks in
V ：Volume of compressor side air tank in
N ：Number of clutch side air tanks
So $\quad(6+1.03)(B+C)=(7+1.03) C$
In the case of inching for the $16^{\prime} \times 23^{\prime}$ ball mill，air consumption becomes
maximum，so that

$$
B=72 \times 4=288 \ell, \quad C=V+200 \times 1
$$

whence $7.03 \times(288+\mathrm{V}+200)=8.03 \times(\mathrm{V}+200)$
Then，$V=488 \times 7.03-200 \times 8.03=1,824$－
In the case of start－up of one unit of grinding system of a $13^{\prime}-1 / 2 \times 16^{\prime}$ rod mill and a $16^{\prime} \times 23^{\prime}$ ball mill at same time，its air requirement will be $B=72+33=103 \ell$

$$
\begin{aligned}
& c=V+200 \times 2=V+400 \\
& 7.03 \times(105+V+400)=8.03 \times(V+400) \\
& V=5.03 \times 7.03-400 \times 8.03=338 \ell
\end{aligned}
$$

Consequently，as volume of compressor side air tank，effective volume of $2 \mathrm{~m}^{3}$ is recormended，assuming some surplus．

2］Selection of air compressor for oil spray system

Each oil spray unite requires air pressure of $4.5 \sim 5.5 \mathrm{~kg} / \mathrm{cm}^{2}(\mathrm{G})$ and consumes air at rate of the following for each spray time．

$$
\begin{aligned}
2-6 S 2 C: 720 \ell \times 2 \text { of free air } & =1,420 \ell \\
2-7 S 2 C: 960 \ell \times 2 \text { of free air } & =1,920 \ell \\
1-3 S 2 C: 185 \ell \times 1 \text { of free air } & =185 \ell \\
\text { Total } & =3,525 \ell
\end{aligned}
$$

Air tank should be installed independently at each mill side．Assuming inner pressure of air tank drops from 7 to $6 \mathrm{~kg} / \mathrm{cm}^{2}(\mathrm{G})$ by each spray，

$$
V_{1} \times(7+1.03)-V_{1} \times(6+1.03)=1.03 V_{2}
$$

$$
\begin{equation*}
\text { where } \mathrm{V}_{1} \text { :Tank volume in } \tag{८}
\end{equation*}
$$

V2 ：Air consumption of each spray time in［l］ then V_{1} is approximately same to V_{2}
Therefore，the following volumes of air tanks should be installed near side of each mill．

$$
\begin{aligned}
& 13^{\prime}-1 / 2 \times 16^{\prime} \text { rod mill }: 750 \ell \\
& 16^{\prime} \times 23^{\prime} \text { ball mill }: 1,000 \ell \\
& 10^{\prime} \times 11^{\prime} \text { ball mill }: 200 \ell
\end{aligned}
$$

Selecting spray interval as minimum 15 minutes（ 4 times per hour）and consumed air is supplied in 5 minutes by the compressor，its piston displacement will be $3,525 \ell /(5 \min \times 0.6)=1,175 \ell / \mathrm{min}$
In actual installation，it will be more economical to select same model with air compressor for air clutch．

3］Air requirement for air motor of rod charger
When an air motor is driven for rod charging，one unit of the grinding system is naturally stopped and another unit is operating normally．In this case，efficient delivery volume of the compressor is

$$
2.18 \times 0.6=1.31 \mathrm{~m}^{3} / \mathrm{min}
$$

Since air consumption of the air motor is $1.1 \mathrm{~m}^{3} / \mathrm{min}$ ，then supplying volume of spray air is $1.31 \mathrm{~m}^{3} / \mathrm{min}-1.1 \mathrm{~m}^{3} / \mathrm{min}=0.21 \mathrm{~m}^{3} / \mathrm{min}$ ．

After 3 operating units of the grinding mills have finished spray at a same time，the compressor requires y minutes of time to recover inner pressure from 6 to $7 \mathrm{~kg} / \mathrm{cm}^{2}$ ，then y is given as follows．
$y=1.95 \mathrm{~m}^{3} / 0.21 \mathrm{~m}^{3} / \mathrm{min}=9.75 \mathrm{~min}$
where $1.95 \mathrm{~m}^{3}$ is total volume of air tanks for the 3 units．
This time of y is shorter than time of interval of spray i．e． 15 min ．，so that it is available to supply compressed air to the air motor by the compressor for oil spray and independent compressor for the air motor is unnecessary．

It is recommendable to install a check valve at each inlet of the air tank in order to prevent from back blow ．

