Design Calculations of Mamut MIII

［1］Design criteria

Annual production：	5，670，000 tons（metric tons as a rule）
Operating days \cdot Running time： 350 Days／year， 3 shifts／day， 8 hours／shift	
Availability：	Crushing；60\％
	Concentrator；90\％
Capacities：	Crushing ；1， 100 dry tons／hour
	Concentrator； 750 dry tons／hour
Method of concentration：All slime flotation	
Concentarate recovered：Copper concentrate	
Characteristics of crude ore：	
Grade of ore；	0．59\％Cu
Specific gravity；	2.7
Apparent Sp．Gr．；	1.7
Moisture；	5． 0%
Maximum size of lump	； $700 \mathrm{~mm} \times 900 \mathrm{~mm} \times 1,400 \mathrm{~mm}$
Angle of repose；	40°
Angle of drawoff；	70°
Characteristics of concentrate：	
Grade；	25\％Cu
Specific gravity；	4.1
Apparent Sp．Gr．；	2.0
Moisture；	8． 0%
Particle size；	－200 mesh 98\％
Angle of repose；	50°
Grinding feed：	
Particle size；	13mm 80\％passing
Work index	$10.8 \mathrm{kwh} / \mathrm{dry}$ short ton
Conditions of flotation：	
	Ip densities Flotation times
Roughing；	35\％Wt $\quad 10 \mathrm{~min}$
Cleaning；	22\％Wt 12 min
Recleaning；	20\％Wt 19 min
Overall recovery；	90\％

［2］Design Calculations

1）Primary crusher

Capacity：$Q=\frac{5,670,000 \mathrm{t} / \mathrm{y}}{350 \mathrm{~d} / \mathrm{y} \times 24 \mathrm{~h} / \mathrm{d} \times 0.6}=1,125 \mathrm{t} / \mathrm{h}$
As a primary crusher，it is suitable to select jaw crusher or gyratory crusher．
In the case of the jaw crusher，however，its maximum capacity is limited to less to $1,000 \mathrm{mt} / \mathrm{h}$ ，so we rejected it from object of selection．Referring to catalogue of manufacturers，the gyratory crusher of 42－65－type was selected，taking account of maximum feed size and capacity．Number of 42 means that feed openingis 42 in i．e． $1,070 \mathrm{~mm}$ and 65 shows that maximum daiameter is $65 \mathrm{in}(1,650 \mathrm{~mm})$ ．
This value of capacity expresses tonnage of feed including fine ore，namely，there is no grizzly in upstream of the crusher．
$1,150 \mathrm{t} / \mathrm{h}$ of the capacity is estimated in the case of 38 mm of eccentric throw at $165 \mathrm{~mm}(0 . S . S .6 " 1 / 2$ ）of open side setting．
Particle size distribution of crushed products was estimated as follows．

Particle sizes		Distributions	Cumulative Distr＇ns
$+6-1 / 2$ in	$(165 \mathrm{~mm})$	10.0%	10.0%
5	$(125 \mathrm{~mm})$	15.0%	25.0
4	$(100 \mathrm{~mm})$	12.0	37.0
3	$(75 \mathrm{~mm})$	15.0	52.0
2	$(50 \mathrm{~mm})$	14.0	66.0
1	$(25 \mathrm{~mm})$	14.0	80.0
-1		20.0	100.0

Maximum product size will be estimated to be $165 \mathrm{~mm} \times 2.2=365 \mathrm{~mm}$ ．
Power requirement per ton of feed is calculated as the following．

$$
\mathrm{Kw} / \mathrm{mt}=\frac{\mathrm{Wi} \times 11.06 \times(\sqrt{\mathrm{F}}-\sqrt{\mathrm{P}})}{\sqrt{F} \times \sqrt{\mathrm{P}}}
$$

Hence，

$$
\begin{aligned}
\mathrm{Kw} / \mathrm{mt} & =\frac{10.8 \times 11.06(925356)}{925 \times 356} \\
& =0.206 \mathrm{kwh} / \mathrm{mt}
\end{aligned}
$$

Total power requirement can be obtained by the following equation．
$\mathrm{Kt}=$（Rating capacity of crusher $\mathrm{mt} / \mathrm{h}) \times \mathrm{Kw} / \mathrm{mt}$
$=1,125 \mathrm{mt} / \mathrm{h} \times 0.206 \mathrm{kwh} / \mathrm{mt}=231.8 \mathrm{kw}$
Recommended motor shuld be sized from 20\％to 25\％larger than the above－mentioned kw in order to overcome shock load．

Then， $231.8 \times 1.25=290 \mathrm{kw}$ ．．be rounded to 300 kw consequently．

2）Apron feeder

Required capacity：Min． $400 \mathrm{mt} / \mathrm{h}$ ，Max． $1,600 \mathrm{mt} / \mathrm{h}$
Apparent specific gravity of the crude ore：1．7 mt／m ${ }^{3}$
Volumes of the ore： $400 \mathrm{mt} / \mathrm{h} \div 1.7 \mathrm{mt} / \mathrm{m}^{3}=235 \mathrm{~m}^{3} / \mathrm{h}$ Min．
$1,600 \mathrm{mt} / \mathrm{h} \div 1.7 \mathrm{mt} / \mathrm{m}^{3}=941 \mathrm{~m}^{3} / \mathrm{h}$ Max.
$1,125 \mathrm{mt} / \mathrm{h} \div 1.7 \mathrm{mt} / \mathrm{m}^{3}=662 \mathrm{~m}^{3} / \mathrm{h}$ Averagingly

Sectional area of discharge opening： $1,800 \mathrm{mmW} \times 1,600 \mathrm{mmH}=2.88 \mathrm{~m}^{2}$
Voluminal efficiency： 0.9
Apron speed：V $235 \mathrm{~m}^{3} / \mathrm{h} \div\left(60 \mathrm{~min} / \mathrm{h} \times 2.88 \mathrm{~m}^{2} \times 0.9\right)=1.5 \mathrm{~m} / \mathrm{min} \operatorname{Min}$ ．
$941 \mathrm{~m}^{3} / \mathrm{h} \div\left(60 \mathrm{~min} / \mathrm{h} \times 2.88 \mathrm{~m}^{2} \times 0.9\right)=6.0 \mathrm{~m} / \mathrm{min}$ Max．
$662 \mathrm{~m}^{3} / \mathrm{h} \div\left(60 \mathrm{~min} / \mathrm{h} \times 2.88 \mathrm{~m}^{2} \times 0.9\right)=4.3 \mathrm{~m} / \mathrm{min} \mathrm{Av}$
Design allowable tension：T 30， 000 kg
Power requirement：$\quad K=\mathrm{VT} / 6,120=6 \mathrm{~m} / \mathrm{min} \times 30,000 \mathrm{~kg} / 6,120=29.4 \rightarrow 30 \mathrm{kw}$
Model selected：Kobe Steel Ltd．；Ultra－heavy duty type 18－66AFH
Generally speaking，capacity of the Apron fedder is influenced by type of feed． shape and size of particles，moisture，clay content and so on．To meet such factors successfully，it is advisable to adop variable speed motor．

Maximum feed lump size is estimated to be $165 \mathrm{~mm} \times 230 \mathrm{~mm} \times 330 \mathrm{~mm}$ approximately， based on the product size distribution of the primary crusher．

3）Primary screen

It is desirable to use double decked screes，using upper deck as gaurd screen for lower deck．Opening size of each deck aperture will be 70 mm for the upper deck and 28 mm for the lower deck，respectively．

Material balance is estimated as follows．
Upper screen undersize $=1,125 \mathrm{mt} / \mathrm{h} \times 45 \% \times 90 \%=456 \mathrm{mt} / \mathrm{h}$
（Assuming screening efficiency as 90% ．）
Lower screen undersize $=456 \mathrm{mt} / \mathrm{h} \times 20 / 45 \% \times 80 \%=162 \mathrm{mt} / \mathrm{h}$
In the case of lower deck，efficiencytends to be lower than upper deck，based on smaller feed size etc．

Total screen oversizes $=1,125 \mathrm{mt} / \mathrm{h}-162 \mathrm{mt} / \mathrm{h}=963 \mathrm{mt} / \mathrm{h}$
Required screen area is given by Gluck＇s equation．

$$
\mathrm{A}=\frac{\mathrm{Q}}{\mathrm{~B} \cdot \mathrm{ID} \cdot \mathrm{So} \cdot \mathrm{Sh} \cdot \mathrm{~F} \cdot \mathrm{O} \cdot \mathrm{~W} \cdot \mathrm{Y} \cdot \mathrm{M} \cdot \mathrm{Z}}
$$

Where

[^0]0 ：Open area facto；$=1-0,02(50-$ opening\％）
W ：Factor depending on bulk density＝1．7／1． $6=1.06$
Y ：Shape factor due to shape of particles which varies by percentage of particles in total feed where major axis／minor axis ratio is bigger than 3 ，besides minor axis ranges from $1 / 2$ to $2 / 3$ ．
（ 5% ；1．00，10\％；0．95，20\％；0．85）
M：Wet screening factor
Dry；1．0，
Wet（In the case where water is sprayed $25 \sim 50$ l per $\mathrm{m}^{3} / \mathrm{h}$ of feed）

Opening	25.4 mm	19.1	12.7	9.5	7.9	4.8	3.2	1.6	0.8

M	2.9	2.71	2.5	2.25	2.1	1.9	1.75	1.5	1.25

Z：Moisture and cohesion factor
Wet muddy or sticky gravel，gypsum，apatite etc．； 0.75
Ore with wet surfaces，Moisture $>6 \%$ and not water absorpivet materials ； 0.85

Dry limp materials，Moistur $<4 \% ; 1.0$
Assuming $I=0.95, F=1, W=1.06, Y=1, M=1, Z=0.75$ ，abovesaid equation can be expressed as the following．

$$
A=\frac{Q}{0.757 \times B \cdot I \cdot D \cdot S o \cdot S h \cdot 0 .}
$$

Then
$1,125 \times 1.102$
Upper deck $A=\frac{}{0.757 \times 9.0 \times 1 \times 1.19 \times 0.82 \times 1.28}=145 \mathrm{ft}^{2}$
456×1.102
Lower deck $A=\frac{}{0.757 \times 5.9 \times 0.9 \times 1.5 \times 0.90 \times 1.16}=104 \mathrm{ft}^{2}$
$8^{\prime} \times 20^{\prime}$ Ripl－FloScreen（160 ft^{2} ）has capacity to meet the abovementioned requirement．

Check after Allis Chalmars＇s method．
$\mathrm{Ta}=\mathrm{Tb} \times \mathrm{V} \times \mathrm{H} \times \mathrm{K} \times \mathrm{W}$
where Ta：Actual capacity（st／ft² $/ \mathrm{h}$ ）
Tb ：Basic capacity（In the case of opening 2 ＂ $3 / 4 ; 8.8 \mathrm{st} / \mathrm{ft}^{2} / \mathrm{h}$ ）
V：Oversize factorof upper and lowr decks；1．42
H：Halfsize factor，upperdeck；0．8，lowerdeck； 0.70
K：Condition factor；dry uncrushed materials with 6% moisture 1.25
W：Weight factor；Bulk density $105 \mathrm{lb} / \mathrm{ft}^{3} \rightarrow 1.05$
Then，$\quad \mathrm{Ta}=8.8 \times 1.42 \times 0.8 \times 1.25 \times 1.05 \div 1.102=11.91 \mathrm{mt} / \mathrm{ft}^{2} \cdot \mathrm{~h}$
Hence required screen area A
$A=1,125 \mathrm{mt} / \mathrm{h} / 11.91 \mathrm{mt} / \mathrm{ft}^{2} \cdot \mathrm{~h}=94 \mathrm{ft}^{2}<160 \mathrm{ft}^{2}$
This will meet the above said requirement．

4）Flow sheet of the secondary crushing

7 ft Symons Standaerd type cone crushers were recommended as the secondary crushers． This model has $750 \mathrm{st} / \mathrm{h}$ ofcapacity in standard conditions．The bulk density in the standard conditions is 1.6 ．
Changing into metric tons，
Capacity $/$ Unit $=750 \mathrm{st} / \mathrm{h} \times 0.907 \mathrm{mt} / \mathrm{st} \times 1.7 / 1.6=722 \mathrm{mt} / \mathrm{h} \cdot \mathrm{Unit}$
Then，required unit number is obtained as the following．
Required units of 2 ry crushers $=963 \mathrm{mt} / \mathrm{h} \div 722 \mathrm{mt} / \mathrm{h}$－Unit

$$
=1.33 \rightarrow 2 \text { Units }
$$

After Taggart：Hand book of Mineral Dressing 4－54．，particle size distribution of the crushed product is estimated as the following．

Particle sizedistribution of Size （mm） +35				Oversize\％	crushed product Cumulative oversize\％
25	28	28			
17.5	16	44			
12.5	15	59			
-12.5	12	71			

The maximum size of the crushed product is estimated to be， $32 \mathrm{~mm} \times 2.2=70 \mathrm{~mm}$ from open side setting．

Required power of the standard cone crushers

Required power per ton of ore

$$
\mathrm{Kw} / \mathrm{mt}=\frac{\mathrm{Wi} \times 11.06 \times(\sqrt{\mathrm{F}}-\sqrt{\mathrm{P}})}{\sqrt{\mathrm{F}} \times \sqrt{\mathrm{P}}}
$$

Where

> Wi: Work index $10.8 \mathrm{kwh} / \mathrm{st}$ $\mathrm{F}:$ Feed size 80% passing $\quad 140,000$ microns $\quad \sqrt{F}=374$ $\mathrm{P}:$ Product size 80% passing $40,000 \mathrm{microns} \quad \sqrt{P}=200$

Hence，

$$
\begin{aligned}
\mathrm{Kw} / \mathrm{mt} & =\frac{10.8 \times 11.06 \times(374-200)}{374 \times 200} \\
& =0.278 \mathrm{kwh} / \mathrm{mt}
\end{aligned}
$$

Total power requirement is obtained by multiplication of standard capacityto this．

$$
\mathrm{Kw}=0.278 \mathrm{kwh} / \mathrm{mt} \times 722 \mathrm{mt} / \mathrm{h}=200.7 \mathrm{kw} \text { 。 }
$$

Then recommended motor power perunit should be $200.7 \mathrm{kw} / 0.9=222 \mathrm{kw} \rightarrow 225 \mathrm{kw}$ ．

5）Material balance sheet of 2 ry screens and 3ry crushers

After Taggart Handbook 19－201，the following equations are given．
$K=\mathrm{Fb}_{\mathrm{b}} / \mathrm{C}=(\mathrm{c}-\mathrm{t}) /(\mathrm{fb}-\mathrm{t})$
$\mathrm{C}=\mathrm{Fa}$
$\mathrm{Fb}=\mathrm{Fa}(\mathrm{c}-\mathrm{t}) /(\mathrm{fb}-\mathrm{t})$
where $\quad \mathrm{Fa}_{\mathrm{a}}$ ：Tonnage of new feed＝Feed of 2ry crushers［mt／h］
Fb ：Total feed of 2ry screens［mt／h］
T ：Oversize of $2 r y$ screens［mt／h］
C ：Undersize of 2 ry screens［mt／h］
F_{c} ：Tonnage of 3ry cusher product［mt／h］
fa_{a} ：Percentage of smaller than a certain siz in new feed［\％］
fb ：Percentage of smaller than a certain size in total feed［\％］
t ：Percentage of smaller than a certain size in oversize［\％］
c ：Percentage of smaller than a certain size in undersize［\％］ Content of minus 18 mm size in each material is estimated after given catalogue and Taggart Handbook，as the following．

$$
\begin{aligned}
\mathrm{Fa} & =963 \mathrm{mt} / \mathrm{h}=\mathrm{C} \\
\mathrm{fb} & =53 \% \\
\mathrm{c} & =85 \% \\
\mathrm{t} & =11 \%
\end{aligned}
$$

Then

$$
K=\frac{c-t}{f b-t}=\frac{85-11}{53-11}=1.76
$$

$$
\mathrm{Fb}_{b}=\mathrm{Fa}_{\mathrm{a}} \times \mathrm{K}=963 \mathrm{mt} / \mathrm{h} \times 1.76=1,695 \mathrm{mt} / \mathrm{h}
$$

$$
\mathrm{T}=\mathrm{Fb}-\mathrm{C}=1,695 \mathrm{mt} / \mathrm{h}-963 \mathrm{mt} / \mathrm{h}=732 \mathrm{mt} / \mathrm{h}
$$

Hence the material balance is obtained as the follows．

Material balance sheet of 2ry screens and 3ry crushers

Required area of the $2 r y$ screens is calculated by same mthod with $1 r y$ screens．

$$
A=\frac{1,695 \times 1,102}{0.757 \times 5.0 \times 1 \times 1.05 \times 0.95 \times 1.16}=426 \mathrm{ft}^{2}
$$

Hence unit number of the 2 ry screens of 8 ft by 20 ft will be estimated to be $N=426 \div(8 \times 20)=2.6 \rightarrow 3$ units

As 3ry crushers，7＇Symons short head cone crushers are recommended assuming closedset setting（C．S．S） 13 mm ．

Recommended capacity of the 7＇short head cone crushers is estimated after manufacturer＇s catalogue．

$$
Q=300 \mathrm{st} / \mathrm{h} \times 0.907 \mathrm{mt} / \mathrm{st} \times 1.7 / 1.6=289 \mathrm{mt} / \mathrm{h}
$$

Then unit number of the 3ry crushers will be

$$
N=732 \mathrm{mt} / \mathrm{h} \div 289 \mathrm{mt} / \mathrm{h} \cdot \frac{\text { 台 }=2.5 \rightarrow 3 \text { units. }}{}
$$

Required power per ton of ore

$$
\mathrm{Kw} / \mathrm{mt}=\frac{\mathrm{Wi} \times 11.06 \times(\sqrt{\mathrm{F}}-\sqrt{\mathrm{P}})}{\sqrt{\mathrm{F}} \times \sqrt{\mathrm{P}}}
$$

Where	$W i:$ Work index $10.8 \mathrm{kwh} / \mathrm{st}$
	$\mathrm{F}:$ Feed size 80% passing 55,000 microns $\sqrt{ } \mathrm{F}=235$
$\mathrm{P}:$ Product size 80% passing $26,000 \mathrm{microns} \quad \sqrt{ } \mathrm{P}=161$	

Hence，

$$
\begin{aligned}
\mathrm{Kw} / \mathrm{mt} & =\frac{10.8 \times 11.06 \times(235-161)}{235 \times 161} \\
& =0.198 \mathrm{kwh} / \mathrm{mt}
\end{aligned}
$$

Total power requirement is obtained by multiplication of standard capacityto this．

$$
\mathrm{Kw}=0.198 \mathrm{kwh} / \mathrm{mt} \times 450 \mathrm{mt} / \mathrm{h} \times 1.25=112 \mathrm{kw} \text { 。 }
$$

This vakue is less than actual installed power of 225 kw and will meet the above said requirement．It is recommendable to install same motor with 2 ry crushers in order to minimize spare motors．

6）Vibrating feeders

Taking account of easy controllability，noise and costs，it is advantageous to select vibrating feeders，i．e．YASUKAWA Uras feeders．To drawoff the ore out of the coarse ore stock pile，running of 2 units of vibrating feeders will be expected normally．So averaging throughput per unit will be $1,125 \mathrm{mt} / \mathrm{h} / 2=563 \mathrm{mt} / \mathrm{h}$ ．Selection of the feeder，however，it is necessary to take account of temporary increased production．After catalogue data of the manufacturer，model of $1,400 \mathrm{mmW} \times 1,500 \mathrm{mmL}$ （capacity：1， $000 \mathrm{mt} / \mathrm{h} \cdot$ unit）will be suitable for this mission．

In order to increase live capacity of the coarse ore stock pil，we decided to install 4 units offeeders．（2 units operating， 2 units stand－by）．Theoritical throughput out of surge binwill be estimated as $1,695 \mathrm{mt} / \mathrm{h} / 3 \mathrm{units}=565 \mathrm{mt} / \mathrm{h} \cdot \mathrm{unit}$ ．It is also advisable to select the same model for this service with coarse ore stockpile drawoff，based on above－said reasons．

Installed motor will be $3.7 \mathrm{kw} \times 2 /$ unit after manufacturer＇s catalogue．
Each trough of the vibrating feeders should have 12 degrees of down slope for down stream．For these services，both 2 units of variable controllers will be installed to meet such conditions as valiation of moisture and clay content in the ore and ore sizes etc．Speed control will be able to realize by electrical remote controllers in central control room automatically or manually．

7）Coarse ore stock pile
The following assumptions were made．
Live inventory：Ore volume should should be for 6 hours of crushing operation．be
for 6 hours of crushing operation．
Total tonnage including dead should be for 24 hours of crushing operation．
Angle of repose： 40°
Angle of drawoff： 70°
Draw opening ： 4

Strictly speaking，calculations of movable inventory are very complicated， but in our case it is unnecessary to require such accuracy as small ore bin．

To simplify calculation of the movable tonnage，its volume was divided into three parts．
V_{1} ：Perfect conical part at top of the pile．
V_{2} ：Circular truncated parts at intermediate of pile．
V_{3} ：Four inverted cones in the bottom

$$
\begin{aligned}
& V_{1}=\pi / 3 \cdot r^{2} h=3.14 \times 82 \times 6.4 \div 3=429 m^{3} \\
& V_{2}=1 / 3 \cdot h(B+b+B b)
\end{aligned}
$$

Where $\quad h$ ：Height $=7.5 \mathrm{~m}$
b：Bottome base area $=3.14 \times 52 \times 4=314 \mathrm{~m}^{2}$
B：Top base area $=420 \mathrm{~m}^{2}$ Obtained graphic calculation
Then $\mathrm{V}_{2}=1 / 3 \cdot 7.5 \times(314+420+314 \times 420)=2,742 \mathrm{~m}^{3}$
$V_{3}=\pi / 3 \cdot r^{2} h \times 4=3.14 \times 52 \times 11 \times 4 \div 3=1,151 \mathrm{~m}^{3}$

$$
V=V_{1}+V_{2}+V_{3}=429 m^{3}+2,742 m^{3}+1,151 \mathrm{~m}^{3}=4,322 m^{3}
$$

Hence，the movable tonnage of ore inventory T should be

$$
\mathrm{T}=4,322 \mathrm{~m}^{3} \times 1.7 \mathrm{t} / \mathrm{m}^{3}=7,347 \mathrm{mt}
$$

In the case where lack of the movable inventory occurred by reasons of shortage of the run of mine，unscheduled shutdown of the primary crushing plant and so on， a part of dead stock shall be raked．A bulldozer of D6 class will be used for this purpose．

Roofing of the coarse ore stock pile shall not be installed．The reason is we expect that rain water will not flow into drawoff opening in the bottom and occur severe trouble，because ore sizes are coarse and very permeable．

No， 3 belt conveyor and floor of drawoff tunnel shall be sloped down with about $1 / 50$ of gentle slope．

In the case of extraordinal heavy rains，feeding to the No， 3 belt conveyor shall be stopped in order to prevent the ore in crater from sliding down．We expect that probability will be two or three times in every rainiy season．

8）Beltconveyors in the crushing plant

8－1．Design of belt conveyors

Because of ore charactristics，the maximum slope of belt conveyr will be limited to below 16° on the primary crushing product and below 18° on the 2 ry and 3ry cushing circuits respectively．

Taking into consideration that supply of special type belt will be defficult in local market we decided to use standard plain belts as a rule

8－2 Minimum belt widths

Minimum belt widths should be determined based on maximum size of lump ore．
Relationship between maximum lump ore size and belt widths in the following table．

Table 1．Relationship between maximum lump ore size and belt widths

Min．belt widths (mm)	400	500	600	750	900	1,050	1,200
Max．lump size (mm)	100	150	200	250	300	400	500

The width of No． 1 belt conveyor（ No ． 1 BC ）should be naturally wider than that of the Apron feeder in order to function as ore spill catcher．

Other conveyor widths were determined by tonnages of ore to be conveyed．
Standard belt speeds were selected based on the next table．
Table 2．Standard belt speeds for ore：v

belt widths (mm)	400	600	900	1,500	$\geqq 1,600$
belt speeds $(\mathrm{m} / \mathrm{min})$	75	90	120	150	180

$8-3$ ．Transporting capacity of belt conveyors Qm

$Q_{m}=Q_{t} / \gamma=60 \cdot \mathrm{k}_{1} \cdot \mathrm{~K}_{2} \cdot(0.9 \mathrm{~b}-0.05)^{2} \cdot \mathrm{v}$		
where Q_{m}	Belt conveyor capacity	［m $\left.{ }^{3} / \mathrm{h}\right]$
Qt	Tonnage to be carried	［mt／h］
γ	Bulk density	［ $\mathrm{t} / \mathrm{m}^{3}$
k1	Factor based on conveyor	
K2	Factor based on trough	charge
v	：belt speed	［m／min］
b	：Belt width	［m］

Table 3：．k1：Factor based on conveyor slope

Slope angle（ ${ }^{\circ}$ ）	2	4	6	8	10	12	14	16	18	20
K 1	1.00	0.09	0.98	0.97	0.95	0.93	0.91	0.89	0.85	0.81
Slope angle（ ${ }^{\circ}$ ）	21	22	23	24	25	26	27	28	29	30
K 1	0.78	0.76	0.73	0.71	0.68	0.66	0.64	0.61	0.59	0.56

Table 4：k2 Factor based on trough angle and surcharge angle

α	β	10°	20°
0°	0.0292	0.0591	0.0906
20°	0.0963	0.1245	0.1538
30°	0.1248	0.1488	0.1757
40°	0.1406	0.1628	0.1862
45°	0.1485	0.1698	0.1915

Table 5：Relationship between belt width and trough angle

Belt width	Standard trough angle	Max．trough angle
400 mm	20°	20°
$400 \sim 500$	20°	30°
$600 \sim 750$	30°	45°
$900 \sim$	30°	60°

8－3－1．Minimum belt speed of No． 1 BC

$$
\begin{aligned}
Q_{\mathrm{m}}= & Q_{\mathrm{t}} / \gamma=60 \cdot \mathrm{k}_{1} \cdot \mathrm{~K}_{2} \cdot(0.9 \mathrm{~b}-0.05)^{2} \cdot \mathrm{v} \\
\mathrm{Q}_{\mathrm{m}} & : 1,340 \mathrm{mt} / \mathrm{h} \text { max., } \gamma: 1.7, \mathrm{k}_{1}: 1.0, \mathrm{~K}_{2}: 0.1245, \mathrm{~b}: 1.80 \mathrm{~m} \\
\mathrm{v} & =1,340 \div\left\{60 \times 1.7 \times 1.0 \times 0.1245 \times(0.9 \times 1.8-0.05)^{2}\right\} \\
& =42.8 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

Taking account of future capacity expansion and compensation of shut down， belt speed of the No． 1 BCwas determined to be $70 \mathrm{~m} / \mathrm{min}$ ．

8－3－2．Minimum belt speed of No． 2 BC
$Q \mathrm{~m}=\mathrm{Qt} / \gamma=60 \cdot \mathrm{k} 1 \cdot \mathrm{~K} 2 \cdot(0.9 \mathrm{~b}-0.05)^{2} \cdot \mathrm{v}$
Qm：1， $340 \mathrm{mt} / \mathrm{h}$ max．，$r: 1.7, \mathrm{k} 1: 0.91$ for $14^{\circ} 30^{\prime}, \mathrm{K} 2: 0.1488$ ，b：1．05m
$v=1,340 \div\left\{60 \times 1.7 \times 0.91 \times 0.1488 \times(0.9 \times 1.05-0.05)^{2}\right\}=121.1 \mathrm{~m} / \mathrm{min}$
Taking account of 10% of surplus，belt speed was determined to be $121.1 \mathrm{~m} / \mathrm{min} \times 1.1=133.2 \rightarrow 135 \mathrm{~m} / \mathrm{min}$ consequently．

8－3－3．Minimum belt speed of No． 3 BC
$Q \mathrm{~m}=\mathrm{Qt} / \gamma=60 \cdot \mathrm{k} 1 \cdot \mathrm{~K}_{2} \cdot(0.9 \mathrm{~b}-0.05)^{2} \cdot \mathrm{v}$
Qm： $1,500 \mathrm{mt} / \mathrm{h}$ max．，$r: 1.7, \mathrm{k} 1: 0.93$ for 12° ，K2：0．1488， $\mathrm{b}: 1.05 \mathrm{~m}$
$v=1,500 \div\left\{60 \times 1.7 \times 0.93 \times 0.1488 \times(0.9 \times 1.05-0.05)^{2}\right\}$

$$
=132.7 \mathrm{~m} / \mathrm{min}
$$

Taking account of 15% of surplus，belt speed was determined to be $132.7 \mathrm{~m} / \mathrm{min} \times 1.15=152.6 \rightarrow 155 \mathrm{~m} / \mathrm{min}$ consequently．

8－3－4．Minimum belt speed of No． 4 \＆5BC

$$
\begin{aligned}
\mathrm{Qm} & =\mathrm{Qt} / \gamma=60 \cdot \mathrm{k}_{1} \cdot \mathrm{~K}_{2} \cdot(0.9 \mathrm{~b}-0.05)^{2} \cdot \mathrm{v} \\
\mathrm{Qm} & : 750 \mathrm{mt} / \mathrm{h} \max , \gamma: 1.7, \mathrm{k} 1: 0.93 \text { for } 13^{\circ} 16^{\prime} \mathrm{K} 2: 0.1488, \mathrm{~b}: 0.90 \mathrm{~m} \\
\mathrm{v} & =750 \div\left\{60 \times 1.7 \times 0.93 \times 0.1488 \times(0.9 \times 0.90-0.05)^{2}\right\} \\
= & 60.9 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

Taking account of 180% of surplus due to compensation for shutdown of one side system，belt speed was determined to be $60.9 \mathrm{~m} / \mathrm{min} \times 1.80=109.6 \rightarrow 110 \mathrm{~m} / \mathrm{min}$ consequently．

8－3－5．Minimum belt speed of No． 6 BC

$$
\begin{aligned}
& Q m=Q t / \gamma=60 \cdot \mathrm{k}_{1} \cdot \mathrm{~K}_{2} \cdot(0.9 \mathrm{~b}-0.05)^{2} \cdot \mathrm{v} \\
& \mathrm{Qm}: 1,870 \mathrm{mt} / \mathrm{h} \max ., \gamma: 1.7, \mathrm{k} 1: 0.95 \text { for } 10^{\circ}, \mathrm{K} 2: 0.1488, \mathrm{~b}: 1.20 \mathrm{~m} \\
& \mathrm{v}=1,870 \div\left\{60 \times 1.7 \times 0.95 \times 0.1488 \times(0.9 \times 1.20-0.05)^{2}\right\} \\
& =122.2 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

Taking account of 15% of surplus，belt speed was determined to be 122． $2 \mathrm{~m} / \mathrm{min} \times 1.15=140.5 \rightarrow 1501 \mathrm{~m} / \mathrm{min}$ consequently．

8－3－6．Minimum belt speed of No． 7 BC

$$
\begin{aligned}
\mathrm{Qm}= & Q \mathrm{t} / \gamma=60 \cdot \mathrm{k} 1 \cdot \mathrm{~K}_{2} \cdot(0.9 \mathrm{~b}-0.05)^{2} \cdot \mathrm{v} \\
\mathrm{Qm} & : 1,870 \mathrm{mt} / \mathrm{h} \text { max., } \gamma: 1.7, \mathrm{k} 1: 0.90 \text { for } 15^{\circ}, \mathrm{K} 2: 0.1488, \mathrm{~b}: 1.20 \mathrm{~m} \\
\mathrm{v}= & 1,870 \div\left\{60 \times 1.7 \times 0.90 \times 0.1488 \times(0.9 \times 1.20-0.05)^{2}\right\} \\
= & 129.0 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

Taking account of 15% of surplus，belt speed was determined to be $129.0 \mathrm{~m} / \mathrm{min} \times 1.15=148.4 \rightarrow 1501 \mathrm{~m} / \mathrm{min}$ consequently．

8－3－7．Minimum belt speed of No．8， 9 \＆10BC

$$
\begin{aligned}
& \mathrm{Qm}=\mathrm{Qt} / \gamma=60 \cdot \mathrm{k}_{1} \cdot \mathrm{~K}_{2} \cdot(0.9 \mathrm{~b}-0.05)^{2} \cdot \mathrm{v} \\
& \mathrm{Qm} \\
& \quad: 625 \mathrm{mt} / \mathrm{h} \max ., \gamma: 1.7, \mathrm{k} 1: 0.91 \text { for } 13^{\circ} 53^{\prime} \mathrm{K} 2: 0.1488, \quad \mathrm{~b}: 0.90 \mathrm{~m} \\
& \mathrm{v}
\end{aligned}=625 \div\left\{60 \times 1.7 \times 0.91 \times 0.1488 \times(0.9 \times 0.90-0.05)^{2}\right\},
$$

Taking account of 40% of surplus due to compensation for shutdown of one system，belt speed was determined to be $78.3 \mathrm{~m} / \mathrm{min} \times 1.40=109.6 \rightarrow 110 \mathrm{~m} / \mathrm{min}$ consequently．

8－3－8．Minimum belt speed of No． 11 BC

$$
\begin{aligned}
Q \mathrm{~m} & =Q \mathrm{t} / \gamma=60 \cdot \mathrm{k} 1 \cdot \mathrm{~K}_{2} \cdot(0.9 \mathrm{~b}-0.05)^{2} \cdot \mathrm{v} \\
\mathrm{Qm} & : 250 \mathrm{mt} / \mathrm{h} \text { max., } \gamma: 1.7, \mathrm{k} 1: 1.00 \text { for } 0^{\circ}, \mathrm{K} 2: 0.1488, \text { b: } 1.20 \mathrm{~m} \\
\mathrm{v} & =250 \div\left\{60 \times 1.7 \times 1.00 \times 0.1488 \times(0.9 \times 1.20-0.05)^{2}\right\} \\
& =15.5 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

Taking account of shock load when ore bridges slide down in the surge bin， belt speed was determined to be $135 \mathrm{~m} / \mathrm{min}$ consequently．

8－3－9 Minimum belt speed of No． 12 BC

$$
\begin{aligned}
& Q m= Q t / r=60 \cdot \mathrm{k}_{1} \cdot \mathrm{~K}_{2} \cdot(0.9 \mathrm{~b}-0.05)^{2} \cdot \mathrm{v} \\
& \mathrm{Qm} \\
& \mathrm{v}=: 1,500 \mathrm{mt} / \mathrm{h} \max , r: 1.7, \mathrm{k} 1: 0.97 \text { for } 6^{\circ} 57, \quad \mathrm{~K} 2: 0.1488, \mathrm{~b}: 1.20 \mathrm{~m} \\
&= 96.0 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

Taking account of 40% of surplus belt speed was determined to be 96 ． $0 \mathrm{~m} / \mathrm{min} \times 1.40=134.4 \rightarrow 1351 \mathrm{~m} / \mathrm{min}$ consequently．

8－3－10 Minimum belt speed of No． 13 BC

$$
Q m=Q t / \gamma=60 \cdot \mathrm{k}_{1} \cdot \mathrm{~K}_{2} \cdot(0.9 b-0.05)^{2} \cdot \mathrm{v}
$$

$$
\text { Qm } \quad: 1,500 \mathrm{mt} / \mathrm{h} \max ., \gamma: 1.7, \mathrm{k} 1: 0.90 \text { for } 14^{\circ} 39^{\prime}, \mathrm{K} 2: 0.1488, \mathrm{~b}: 1.05 \mathrm{~m}
$$

$$
v=1,500 \div\left\{60 \times 1.7 \times 0.90 \times 0.1488 \times(0.9 \times 1.05-0.05)^{2}\right\}
$$

$$
=137.0 \mathrm{~m} / \mathrm{min}
$$

Taking account of 10% of surplus belt speed was determined to be $137.0 \mathrm{~m} / \mathrm{min} \times 1.10=150.7 \rightarrow 1551 \mathrm{~m} / \mathrm{min}$ consequently．

8－3－11 Minimum belt speed of No． 14 \＆15BC

$$
\begin{aligned}
Q m= & Q t / \gamma=60 \cdot \mathrm{k}_{1} \cdot \mathrm{~K}_{2} \cdot(0.9 \mathrm{~b}-0.05) 2 \cdot \mathrm{v} \\
\mathrm{Qm} & : 1,500 \mathrm{mt} / \mathrm{h} \max , r: 1.7, \mathrm{k} 1: 0.88 \text { for } 16^{\circ} 20^{\prime} \mathrm{K} 2: 0.1488, \mathrm{~b}: 1.20 \mathrm{~m} \\
\mathrm{v} & =1,500 \div\left\{60 \times 1.7 \times 0.88 \times 0.1488 \times(0.9 \times 1.20-0.05)^{2}\right\} \\
& =105.9 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

Taking account of 20% of surplus belt speed was determined to be $105.9 \mathrm{~m} / \mathrm{min} \times 1.20=127.1 \rightarrow 135 \mathrm{~m} / \mathrm{min}$ consequently．

8－4．所要動力の計算

Required power $P: \quad P=P_{1}+P_{2} \pm P_{3}+P_{t} \quad[k w]$
Conveyor power without load $\mathrm{P}_{1}: \mathrm{P}_{1}=0.06 \mathrm{fWv}(\mathrm{I}+10) / 367 \quad$［kw］
Power by horizontal load P_{2} ：$P_{2}=f \cdot Q t(I+10) / 367 b \quad[k w]$
Power by vertical load P_{3} ： $\mathrm{P}_{3}= \pm \mathrm{h} \cdot \mathrm{Qt} / 367$ downward－［kw］
Power by tripper Pt_{t}［kw］
where I ：horizontal length of conveyor（distance between axis and axis of pulleys）
Io ：calibrated horizontal conveyor length cf．Table 6 ［m］
h ：lift
Qt ：tonnage to be carried
［m］
［mt／h］

v	$:$ belt speed	$[\mathrm{m} / \mathrm{min}]$
W	$:$ weight of revolving parts without load	$[\mathrm{kg} / \mathrm{m}]$
W_{1}	$:$ weight of belt	$[\mathrm{kg} / \mathrm{m}]$
μ	$:$ friction coefficient between belt and pulley	
θ	$:$ wrap angle of belt	$[\mathrm{rad}]$
$I_{c}:$ carrier roller spacing	$[\mathrm{m}]$	
I_{r}	$:$ return roller spacing	$[\mathrm{m}]$
f	$:$ revolutionary friction coefficient of roller	

Table 6．Revolutionary friction coefficient of roller f \＆calibrated horizontal conveyor length lo

Structure of roller	f	10
Common roller	0.03	49
Special low resistant，precision finished roller	0.022	66
Down sloped conveyor	0.012	156

Table． 7 Belt width，belt weight W ，weight of revolving parts W1 \＆tripper power Pt

Belt width		W	W1	$\begin{aligned} & \hline \mathrm{Pt} \\ & \mathrm{kw} \end{aligned}$
mm	in	kg／m	kg／m	
400	16	22.4	4.5	
450	18	28	7.0	1.5
500	20	30	7.5	
600	24	35.5	9.0	
750	30	53	13.0	
900	36	63	15.5	2． 65
1，050	42	80	23.0	
1，200	48	90	26.0	3． 55
1，400	56	112	33.0	
1，600	64	125	38.0	5.0
1，800	72	150	46.0	
2，000	80	160	51.0	6.0

Table 8．Friction coefficient between belt and pulley μ

pulley	Operating conditions	μ
Naked steel	Wet by muddy water	0.1
	Moistened	$0.1 \sim 0.2$
	dry	0.25
Corrugated rubber	Wet by muddy water	0.2
lagging	Moistened	$0.2 \sim 0.3$
	dry	0.35

a）Calculations of belt tensions

Effective tension：	$\mathrm{Fp}_{\mathrm{p}}=6,120 \mathrm{P} / \mathrm{v}$	［kg］
Tension on slack side	$F_{2}=F p / e^{\mu \theta-1}$	［kg］
Slope tension：	$\mathrm{F}_{3}=\mathrm{W} 1(\mathrm{~h} \pm \mathrm{f} \cdot \mathrm{I})$ down slope +	［kg］
Minimum tension	Adopt bigger value from the following	
Carrier side；F4	$=50 / 8 \cdot \mathrm{Ic}$（Qt $/ 0.06 \mathrm{v}+\mathrm{W}_{1}$ ）	
Return side；F4	$=50 / 8 \cdot \mathrm{lr} \cdot \mathrm{W}_{1}$	

b）Maximum tension：Adopt the maximum value in the following．

$$
\begin{array}{llll}
F_{\max }=F_{p}+F_{2} & \text { or } & F_{p}+F_{4} \quad(\text { hor izontal }) \\
F_{\max }=F_{p}+F_{2} & \text { or } & F_{p}+F_{3}+F_{4} & \text { (sloped) }
\end{array}
$$

c）Safety factor S ：
Canvas belt $\quad S=\sigma_{c} \times b \times n / F_{\text {max }}$
Steel code belt $S=\sigma_{s} \times n / F_{\text {max }}$ Where $\quad \sigma_{c}:$ strength per one ply $\quad[\mathrm{kg} / \mathrm{cm} \cdot \mathrm{ply}]$
σ_{s} ：strength per one code［kg／cord］

8－4－1．Required power of No． 1 BC

In this case，$B=1,800 \mathrm{~mm}, Q_{t}=1,340 \mathrm{mt} / \mathrm{h}, \mathrm{h}=0 \mathrm{~m}, \mathrm{I}=11.7 \mathrm{~m}, \mathrm{v}=70 \mathrm{~m} / \mathrm{min}$ ，rubber lagged pulley，$\theta: 200^{\circ}=3.49 \mathrm{rad}, \mu=0.3, \mathrm{~W}=150 \mathrm{~kg} / \mathrm{m}, \mathrm{f}=0.03$

Then $\quad P_{1}=0.06 \times 0.03 \times 150 \times 70 \times(11.7+49) / 367=3.13 \mathrm{kw}$ $\mathrm{P}_{2}=0.03 \times 1,340 \times(11.7+49) / 367=6.65 \mathrm{kw}$ $P_{3}=+(0 \times 1,340) / 367=0$ $\mathrm{Pt}=0$
Hence $\quad P=3.13+6.65=9.78 \mathrm{kw}$
Recommended motor power Pm is $9.78 / 0.8=12.23 \rightarrow 15 \mathrm{kw}$ ．

8－4－2．Required power of No． 2 BC

In this case，$B=1,050 \mathrm{~mm}, Q_{t}=1,340 \mathrm{mt} / \mathrm{h}, \mathrm{h}=51.5 \mathrm{~m}, \mathrm{I}=197.5 \mathrm{~m}, \mathrm{v}=135 \mathrm{~m} / \mathrm{min}$ ，rubber lagged pulley，$\theta: 200^{\circ}=3.49 \mathrm{rad}, \quad \mu=0.3, W=150 \mathrm{~kg} / \mathrm{m}, \quad \mathrm{f}=0.03$
Then $\quad P_{1}=0.06 \times 0.03 \times 80 \times 135 \times(197.5+49) / 367=13.06 \mathrm{kw}$
$P_{2}=0.03 \times 1,340 \times(197.5+49) / 367=27.00 \mathrm{kw}$ $P_{3}=+(51.5 \times 1,340) / 367=188.04 \mathrm{kw}$ $\mathrm{Pt}_{\mathrm{t}}=0$
Hence $\quad P=13.06+27.00+188.04=228.1 \mathrm{kw}$
Recommended motor power Pm is $228.1 / 0.8=285.12 \rightarrow 150 \mathrm{kw} \times 2=300 \mathrm{kw}$

8－4－3．Required power of No． 3 BC

In this case，$B=1,050 \mathrm{~mm}$ ，$Q_{t}=1,500 \mathrm{mt} / \mathrm{h}, \mathrm{h}=5.5 \mathrm{~m}, \mathrm{I}=68.5 \mathrm{~m}, \mathrm{v}=155 \mathrm{~m} / \mathrm{min}$ ，rubber lagged pulley，$\theta: 200^{\circ}=3.49 \mathrm{rad}, \quad \mu=0.3, W=150 \mathrm{~kg} / \mathrm{m}, \quad \mathrm{f}=0.03$
Then $\quad P_{1}=0.06 \times 0.03 \times 80 \times 155 \times(68.5+49) / 367=7.15 \mathrm{kw}$ $\mathrm{P}_{2}=0.03 \times 1,500 \times(68.5+49) / 367=14.41 \mathrm{kw}$ $\mathrm{P}_{3}=+(5.5 \times 1,500) / 367=22.48 \mathrm{kw}$ $\mathrm{Pt}_{\mathrm{t}}=0$
Hence $\quad P=7.15+14.41+22.48=44.04 \mathrm{kw}$
Recommended motor power Pm is $44.04 / 0.8=55.05 \rightarrow 55 \mathrm{kw}$

8－4－4．Required power of No． 4 \＆5BC

In this case，$B=900 \mathrm{~mm}$ ， $\mathrm{Qt}_{\mathrm{t}}=750 \mathrm{mt} / \mathrm{h}, \mathrm{h}=10.8 \mathrm{~m}, \mathrm{I}=45.8 \mathrm{~m}, \mathrm{v}=110 \mathrm{~m} / \mathrm{min}$ ，rubber lagged pulley，$\theta: 200^{\circ}=3.49 \mathrm{rad}, \mu=0.3, \mathrm{~W}=150 \mathrm{~kg} / \mathrm{m}, \mathrm{f}=0.03$
Then $\quad P_{1}=0.06 \times 0.03 \times 65 \times 110 \times(45.8+49) / 367=3.32 \mathrm{kw}$
$\mathrm{P}_{2}=0.03 \times 750 \times(45.8+49) / 367=5.81 \mathrm{kw}$
$\mathrm{P}_{3}=+(10.8 \times 750) / 367=22.07 \mathrm{kw}$

$$
P \mathrm{t}=0
$$

Hence $\quad P=3.32+5.81+22.07=31.2 \mathrm{kw}$
Recommended motor power Pm is $31.2 / 0.8=39 \rightarrow 45 \mathrm{kw}$

8－4－5．Required power of No． 6 BC

In this case，$B=1,200 \mathrm{~mm}$ ，$Q_{t}=1,870 \mathrm{mt} / \mathrm{h}, \mathrm{h}=3.2 \mathrm{~m}, \mathrm{I}=69.2 \mathrm{~m}, \mathrm{v}=150 \mathrm{~m} / \mathrm{min}$ ，rubber lagged pulley，$\theta: 200^{\circ}=3.49 \mathrm{rad}, \mu=0.3, W=150 \mathrm{~kg} / \mathrm{m}, \quad \mathrm{f}=0.03$

Then $\quad P_{1}=0.06 \times 0.03 \times 90 \times 150 \times(69.2+49) / 367=7.83 \mathrm{kw}$ $P_{2}=0.03 \times 1,870 \times(69.2+49) / 367=18.07 \mathrm{kw}$ $P_{3}=+(3.2 \times 1,870) / 367=16.31 \mathrm{kw}$ Pt $=0$
Hence $\quad P=7.83+18.07+16.31=42.21 \mathrm{kw}$
Recommended motor power Pm is $42.21 / 0.8=52.76 \rightarrow 55 \mathrm{kw}$

8－4－6．Required power of No． 7 BC

In this case，$B=1,200 \mathrm{~mm}$ ，$Q t=1,870 \mathrm{mt} / \mathrm{h}, \mathrm{h}=19.4 \mathrm{~m}, \mathrm{I}=68.31 \mathrm{~m}, \mathrm{v}=150 \mathrm{~m} / \mathrm{min}$ ，rubber lagged pulley，$\theta: 200^{\circ}=3.49 \mathrm{rad}, \mu=0.3, \mathrm{~W}=150 \mathrm{~kg} / \mathrm{m}, \mathrm{f}=0.03$

Then $\quad P_{1}=0.06 \times 0.03 \times 90 \times 150 \times(68.31+49) / 367=7.77 \mathrm{kw}$
$P_{2}=0.03 \times 1,870 \times(68.31+49) / 367=17.93 \mathrm{kw}$ $P_{3}=+(19.4 \times 1,870) / 367=98.85 \mathrm{kw}$ $\mathrm{Pt}=0$
Hence $\quad P=7.77+17.73+98.85=124.55$
Recommended motor power Pm is 125．55／0．8＝155． $69 \rightarrow 150 \mathrm{kw}$

8－4－7．Required power of No．8，9 \＆ 10 BC

In this case，$B=900 \mathrm{~mm}$ ， $\mathrm{Qt}=625 \mathrm{mt} / \mathrm{h}, \mathrm{h}=10.4 \mathrm{~m}, \mathrm{I}=44.68 \mathrm{~m}, \mathrm{v}=105 \mathrm{~m} / \mathrm{min}$ ，rubber lagged pulley，$\theta: 200^{\circ}=3$ ．49rad，$\mu=0.3, \mathrm{~W}=150 \mathrm{~kg} / \mathrm{m}, \mathrm{f}=0.03$

Then $\quad P_{1}=0.06 \times 0.03 \times 65 \times 105 \times(44.68+49) / 367=3.14 \mathrm{kw}$
$P_{2}=0.03 \times 625 \times(44.68+49) / 367=4.79 \mathrm{kw}$
$P_{3}=+(10.4 \times 625) / 367=17.71 \mathrm{kw}$ Pt $=0$
Hence $\quad P=3.14+4.79+17.71=25.64 \mathrm{kw}$
Recommended motor power Pm_{m} is 25．64／0．8＝32．05 $\rightarrow 37 \mathrm{kw}$

8－4－8．Required power of No． 11 BC
In this case，$B=1,200 \mathrm{~mm}, Q \mathrm{t}=1,500 \mathrm{mt} / \mathrm{h}, \mathrm{h}=0.0 \mathrm{~m}, \mathrm{I}=14.0 \mathrm{~m}, \mathrm{v}=135 \mathrm{~m} / \mathrm{min}$ ，rubber lagged pulley，$\theta: 200^{\circ}=3$ ．49rad，$\mu=0.3, W=150 \mathrm{~kg} / \mathrm{m}, \mathrm{f}=0.03$

Then $\quad P_{1}=0.06 \times 0.03 \times 90 \times 135 \times(14.0+49) / 367=3.75 \mathrm{kw}$ $P_{2}=0.03 \times 1,500 \times(14.0+49) / 367=7.72 \mathrm{kw}$ $P_{3}=+(0.0 \times 1,500) / 367=0.00 \mathrm{kw}$ $\mathrm{Pt}_{\mathrm{t}}=0$
Hence $\quad P=3.75+7.72=11.47 \mathrm{kw}$
Recommended motor power Pm is $11.47 / 0.8=14.34 \rightarrow 15 \mathrm{kw}$

8－4－9．Required power of No． 12 BC
In this case，$B=1,200 \mathrm{~mm}, Q_{t}=1,500 \mathrm{mt} / \mathrm{h}, \mathrm{h}=4.6 \mathrm{~m}, \mathrm{I}=46.7 \mathrm{~m}, \mathrm{v}=135 \mathrm{~m} / \mathrm{min}$ ，rubber lagged pulley，$\theta: 200^{\circ}=3.49 \mathrm{rad}, \mu=0.3, W=150 \mathrm{~kg} / \mathrm{m}, \mathrm{f}=0.03$
Then $\quad P_{1}=0.06 \times 0.03 \times 90 \times 135 \times(46.7+49) / 367=5.70 \mathrm{kw}$ $P_{2}=0.03 \times 1,500 \times(46.7+49) / 367=11.73 \mathrm{kw}$ $\mathrm{P}_{3}=+(4.6 \times 1,500) / 367=18.80 \mathrm{kw}$ $\mathrm{Pt}=0$
Hence $\quad P=3.70+11.73+18.80=36.23 \mathrm{kw}$
Recommended motor power Pm is $36.23 / 0.8=45.28 \rightarrow 45 \mathrm{kw}$

8－4－9．Required power of №． 13 BC

In this case，$B=1,050 \mathrm{~mm}$ ，$Q_{t}=1,500 \mathrm{mt} / \mathrm{h}, \mathrm{h}=20.1 \mathrm{~m}, \mathrm{I}=77.1 \mathrm{~m}, \mathrm{v}=155 \mathrm{~m} / \mathrm{min}$ ，rubber lagged

$$
\text { pulley, } \theta: 200^{\circ}=3.49 \mathrm{rad}, \mu=0.3, \mathrm{~W}=150 \mathrm{~kg} / \mathrm{m}, \mathrm{f}=0.03
$$

Then $\quad P_{1}=0.06 \times 0.03 \times 80 \times 155 \times(77.1+49) / 367=6.67 \mathrm{kw}$
$\mathrm{P}_{2}=0.03 \times 1,500 \times(77.1+49) / 367=15.46 \mathrm{kw}$
$P_{3}=+(20.1 \times 1,500) / 367=82.15 \mathrm{kw}$
$\mathrm{Pt}=0$
Hence $\quad P=6.67+15.46+82.15=104.28 \mathrm{kw}$
Recommended motor power Pm_{m} is $104.28 / 0.8=130.35 \rightarrow 150 \mathrm{kw}$
8－4－10．Required power of No． 14 \＆ 15
In this case，$B=1,200 \mathrm{~mm}, Q_{t}=1,500 \mathrm{mt} / \mathrm{h}, \mathrm{h}=4.5 \mathrm{~m}, \mathrm{I}=15.5 \mathrm{~m}, \mathrm{v}=135 \mathrm{~m} / \mathrm{min}$ ，rubber lagged pulley，$\theta: 200^{\circ}=3.49 \mathrm{rad}, \mu=0.3, \mathrm{~W}=150 \mathrm{~kg} / \mathrm{m}, \mathrm{f}=0.03$
Then $\quad P_{1}=0.06 \times 0.03 \times 90 \times 135 \times(15.5+49) / 367=3.84 \mathrm{kw}$
$\mathrm{P}_{2}=0.03 \times 1,500 \times(15.5+49) / 367=7.91 \mathrm{kw}$
$\mathrm{P}_{3}=+(4.5 \times 1,500) / 367=18.39 \mathrm{kw}$
$\mathrm{Pt}=0$
Hence $\quad P=3.84+7.91+18.39=30.14 \mathrm{kw}$
Recommended motor power Pm is $30.14 / 0.8=37.68 \rightarrow 37 \mathrm{kw}$
Table 9．Driving coefficient $1 / \mathrm{e}^{\mu \theta-1}$

	μ			
θ	0.35	0.30	0.25	0.20
180°	0.499	0.638	0.838	1.140
200	0.418	0.541	0.718	0.990
210	0.384	0.499	0.667	0.925
220	0.353	0.462	0.621	0.866
230	0.325	0.428	0.579	0.812
240	0.300	0.399	0.541	0.763
360	0.125	0.179	0.262	0.399
420	0.083	0.125	0.190	0.300

8－5．Calculation of effective tension of No． 1 BC
$\mathrm{F}_{\mathrm{p}}=6,120 \times 9.78 \mathrm{kw} / 70 \mathrm{~m} / \mathrm{min}=855 \mathrm{~kg}$
$\mathrm{F}_{2}=\mathrm{Fp}_{\mathrm{p}} / \mathrm{e}^{\mu \theta-1}=855 \mathrm{~kg} \times 0.541=462 \mathrm{~kg}$（wrap angle $200^{\circ}, \mu=0.3$ ）
Minimum tension ：F4 $=50 / 8 \cdot$ Ic（Qt $/ 0.06 v+W_{1}$ ）
Here $\mathrm{Ic}: 1.0 \mathrm{~m}, \mathrm{Ir}: 2.0 \mathrm{~m}, \mathrm{v}: 70 \mathrm{~m} / \mathrm{min}, ~ Q t: 1,340 \mathrm{mt} / \mathrm{h}, \mathrm{W}_{1}: 58 \mathrm{~kg} / \mathrm{m}$
$\mathrm{T}_{4 \mathrm{c}}=50 / 8 \times 1.0 \mathrm{~m}(1,340 \mathrm{mt} / \mathrm{h} / 0.06 \times 70 \mathrm{~m} / \mathrm{min}+58 \mathrm{~kg} / \mathrm{m})=2,357 \mathrm{~kg}$
$\mathrm{T} 4 \mathrm{r}=50 / 8 \times 2.0 \mathrm{~m} \times 58 \mathrm{~kg} / \mathrm{m}$
Maximun tension：$F_{\max }=F_{p}+T_{4 c}=855 \mathrm{~kg}+2,357 \mathrm{~kg}=3,212 \mathrm{~kg}$
Calculations on other belt conveyors are omitted here，but their results are listed Annexed table［SPECIFICATIONS OF BELT CONVEYORS］．

8－6．Revolutionary speeds of head pulleys（ $\mathrm{n}: \mathrm{rpm}$ ）
［No．1BC］Here $v=70 \mathrm{~m} / \mathrm{min}$ ，pulley daiameter $\mathrm{D}=900 \mathrm{~mm} \phi=0.9 \mathrm{~m} \phi$
Then $n=v /(\pi D)=70 \mathrm{~m} / \mathrm{min} /(3.14 \times 0.9 \mathrm{~m})=24.76 \mathrm{rpm}$
［No．2BC］Here $v=135 \mathrm{~m} / \mathrm{min}, \quad D=900 \mathrm{~mm} \phi=1.0 \mathrm{~m} \phi$
Then $n=v /(\pi D)=135 \mathrm{~m} / \mathrm{min} /(3.14 \times 1.0 \mathrm{~m})=42.78 \mathrm{rpm}$
［No．3BC］Here $v=155 \mathrm{~m} / \mathrm{min}, \quad D=800 \mathrm{~mm} \phi=0.8 \mathrm{~m} \phi$
Then $n=v /(\pi D)=155 \mathrm{~m} / \mathrm{min} /(3.14 \times 0.8 \mathrm{~m})=61.67 \mathrm{rpm}$
［No． 4 \＆5BC］Here $v=110 \mathrm{~m} / \mathrm{min}, \quad D=800 \mathrm{~mm} \phi=0.8 \mathrm{~m} \phi$
Then $n=v /(\pi D)=110 \mathrm{~m} / \mathrm{min} /(3.14 \times 0.8 \mathrm{~m})=44.77 \mathrm{rpm}$
［No．6BC］Here $v=150 \mathrm{~m} / \mathrm{min}, \quad D=800 \mathrm{~mm} \phi=0.8 \mathrm{~m} \phi$
Then $n=v /(\pi D)=150 \mathrm{~m} / \mathrm{min} /(3.14 \times 0.8 \mathrm{~m})=59.68 \mathrm{rpm}$
［No．7BC］Here $v=150 \mathrm{~m} / \mathrm{min}, \quad D=980 \mathrm{~mm} \phi=0.98 \mathrm{~m} \phi$
Then $n=v /(\pi D)=150 \mathrm{~m} / \mathrm{min} /(3.14 \times 0.98 \mathrm{~m})=48.72 \mathrm{rpm}$
［No．8，9，10BC］Here $v=105 \mathrm{~m} / \mathrm{min}, \quad D=800 \mathrm{~mm} \phi=0.8 \mathrm{~m} \phi$
Then $n=v /(\pi D)=105 \mathrm{~m} / \mathrm{min} /(3.14 \times 0.8 \mathrm{~m})=41.78 \mathrm{rpm}$
［No．11BC］Herev $=135 \mathrm{~m} / \mathrm{min}, D=800 \mathrm{~mm} \phi=0.8 \mathrm{~m} \phi$
Then $n=v /(\pi D)=135 \mathrm{~m} / \mathrm{min} /(3.14 \times 0.8 \mathrm{~m})=53.71 \mathrm{rpm}$
［No．12BC］Here $v=135 \mathrm{~m} / \mathrm{min}, \quad D=800 \mathrm{~mm} \phi=0.8 \mathrm{~m} \phi$
Then $n=v /(\pi D)=135 \mathrm{~m} / \mathrm{min} /(3.14 \times 0.8 \mathrm{~m})=53.71 \mathrm{rpm}$
［No．13BC］Here $v=155 \mathrm{~m} / \mathrm{min}, \quad \mathrm{D}=1,20 \mathrm{~mm}, \phi=1.2 \mathrm{~m} \phi$
Then $n=v /(\pi D)=155 \mathrm{~m} / \mathrm{min} /(3.14 \times 1.2 \mathrm{~m})=41.11 \mathrm{rpm}$
［No．14\＆15BC］Here $v=135 \mathrm{~m} / \mathrm{min}, D=800 \mathrm{~mm} \phi=0.8 \mathrm{~m} \phi$
Then $n=v /(\pi D)=135 \mathrm{~m} / \mathrm{min} /(3.14 \times 0.8 \mathrm{~m})=53.71 \mathrm{rpm}$

8－7．Revolutionary speeds of motors N ，andreductionratio ofsprocket gears i
［No．1BC］Here GM－15－DNP，4p，50Hz，400V， $1 / 30$
$\mathrm{N}=1,500(1-0.03) \times 1 / 30=48.5 \mathrm{rpm}$
it $=48.5 / 24.76=1.956 \quad$ theoretical gear ratio
$\mathrm{i}_{\mathrm{a}}=\mathrm{N}_{\mathrm{ts}} / \mathrm{N}_{\mathrm{tb}}=35 / 19=1.842$ actual gear ratio
［No．2BC］Here TKB－300，6p，1／22．5
$N=1,000(1-0.03) \times 1 / 22.5=43$ ． 1 rpm direct dr ive
［No．3BC］Here GM－55－DSP，4p，50Hz，400V，1／15

$$
N=1,500(1-0.03) \times 1 / 15=97 \mathrm{rpm}, \quad \text { it }=97.0 / 61.7=1.573
$$

$$
\mathrm{i}_{\mathrm{a}}=30 / 19=1.579
$$

［No． 4 \＆5BC］Here GM－45－DSP，4p，50Hz，400V，1／15
$\mathrm{N}=1,500(1-0.03) \times 1 / 15=97 \mathrm{rpm}, \quad$ it $=97.0 / 44 . \quad 8=2.165$ $\mathrm{i}_{\mathrm{a}}=40 / 18=2.220$
［No．6BC］Here GM－55－DSP，4p，50Hz，400V，1／15
$N=1,500(1-0.03) \times 1 / 15=97 \mathrm{rpm}, \quad$ it $=97.0 / 59.7=1.624$
$i_{a}=30 / 18=1.667$
［No．7BC］Here SB－E150，6p，1／20

$$
N=1,000(1-0.03) \times 1 / 20=48.5 \mathrm{rpm}, \quad \text { direct } d r i v e
$$

［No．8，9，10BC］Here GM－37－DRP，4p，50Hz，400V， $1 / 15$

$$
\begin{aligned}
& N=1,500(1-0.03) \times 1 / 15=97 r p m, \quad \text { it }=97.0 / 41.78=2.322 \\
& i_{a}=35 / 15=2.333
\end{aligned}
$$

［No．11BC］Here GM－11－DL，6p， $1 / 20$
$N=1,500(1-0.03) \times 1 / 15=97 r p m, \quad$ it $=97.0 / 53.71=1.805$
$i_{a}=30 / 17=1.765$
［No．12BC］Here GM－55－DSP，4p，50Hz，400V，1／15

$$
\mathrm{N}=1,500(1-0.03) \times 1 / 15=97 \mathrm{rpm}, \quad \text { it }=97.0 / 53.71=1.805
$$

$i_{a}=30 / 17=1.765$
［No．13BC］Here SB－E150，6p，1／20
$N=1,000(1-0.03) \times 1 / 20=48$ ． 5 rpm ，direct drive
［No．14\＆15BC］Here GM－37－DRP，4p，50Hz，400V， $1 / 15$
$\mathrm{N}=1,500(1-0.03) \times 1 / 15=97 \mathrm{rpm}, \quad$ it $=97.0 / 53.71=1.805$
ia $=30 / 17=1.765$

8－8．Conveyor belt selection

In order to hold capabilities of anti abrasion and anti shock against rugged lump ores，it is necessary to have a certain rubber thickness to each ore size．

8－8－1．Maximum ore sizes for each conveyor

Maximum ore sizes for each conveyorare shown in Table． 10.
Table10．Maximum ore sizes for each conveyor

Maximum ore size	ConveyorNo．
$350 \mathrm{~mm}\left(14^{\prime \prime}\right)$	No， $1,2,3,4,5 \mathrm{BC}$
$70 \mathrm{~mm}\left(2^{\prime \prime} 1 / 2\right)$	No $, 6,7,8,9,10 \mathrm{BC}$
$25 \mathrm{~mm}\left(1^{\prime \prime}\right)$	No， $11,12,13,14,15, \mathrm{BC}$

8－8－2．Specifications of conveyor belts（BANDO CHEMICAL INDUSTRIES，LTD．）
Referring to above mentioned data and manufacturer＇s catalogueswe selected conveyor belts as the following．
［Steel code ST－1250］：No．2BC
Belt width： $1,250 \mathrm{~mm}$ ，top cover ： 8 mm ，：bottom cover 6 mm
Tensile strength：more than $1,250 \mathrm{~kg} / \mathrm{cm}$
Code diameter： $4.6 \mathrm{~mm} \phi$ ，code structure： 7×7 ，code pitch ： 14.5 mm ，
Code number：70，galvanization for element：zinc
［Banlon\＃900］：No． 1 BC
Belt width： $1,800 \mathrm{~mm}$ ，top cover： 15 mm ，bottom cover： 6 mm Cushion rubber：anti－abrasion \＆anti－shock load，
Tensile strength：more than： $900 \mathrm{~kg} / \mathrm{cm}$
Elongation of cover rubber：new priduct 450\％，after aging 400\％
［Banlon \＃800］：No，3，4，5，7，14， 15 BC
Belt width： $1,200 \mathrm{~mm}, 1,050 \mathrm{~mm}, \quad 900 \mathrm{~mm}, 3$ plies
top cover ： 6 mm ，bottom cover ： 2 mm ，
Tensile strength：more than $800 \mathrm{~kg} / \mathrm{cm}$
Elongation of cover rubber：new priduct 450\％，after aging 380%
［Banlon \＃500］：No，6，11，12， 13 BC
Belt width： $1,200 \mathrm{~mm}, 750 \mathrm{~mm}, 3$ or 2 plies
top cover ： 6 mm or 4 mm ，bottom cover ： 2 mm ，
Tensile strength：more than $500 \mathrm{~kg} / \mathrm{cm}$
Elongation of cover rubber：new priduct：450\％，after aging 380\％
［Banlon\＃400］：No，8，9， 10 BC
Belt width： $900 \mathrm{~mm}, \quad 2 \mathrm{plies}$
top cover ： 6 mm ，bottom cover： 2 mm ，
Tensile strength：more than： $400 \mathrm{~kg} / \mathrm{cm}$
Elongation of cover rubber：new priduct：450\％，after aging 380\％

8－9．Specifications of rubber lagging for head pulleys
Type：Model 5，special double helical
Pulley width：belt width +150 mm

8－10．Specifications of rollers
Standard carrier ：

Self－aligning carrier：
Standard idler：
Self－aligning idler：
［Sanki］BKM $20^{\circ} 3$ roller type
BKM $30^{\circ} 3$ roller type
2° inclind forward 3 roller type flat 1 roller type
2° inclind forward 2 roller type

Self－aligning
idler roller／KAR

idler roller／KR

Rubber sleeved

> idler roller/KSR
Spiral
idler roller

Guide roller
for carrier

for flat belt

8－11．Accessories

Belt cleaner：scraper with carbide tips for outside head pulley type V－type scraper for belt inside
Emergency switch：pull switch for conveyor side
Snaking detector：tumbler switch type
Choking detector ：hanging switch type

Belt cleaner
scraper with carbide tips for outside head pulley type

Emergency switch
tumbler switch type

Choking detector
hanging switch type

9）Fine ore stock pile
9－1．Design concept
Structure of fine ore stock pile was designed to get necessary inventory capacity and minimize construction costs．The stock pile will consist of two cones which a part of them penetrate each other．We estimated dimensiones of each cone to be $55.6 \mathrm{~m} \phi \times 24 \mathrm{mH}$ with angle of repose 40° ．

Conceptional figure of the fine ore stock pile
9－2．Calculation of total volume including dead stock V

$$
V=\left(V_{1}-V_{2}\right) \times 2
$$

Where volume of a perfect cone： V_{1}

$$
V_{1}=\pi / 3 \cdot R 2 H=3.14 \times 27.82 \times 24 / 3=19,413 \mathrm{~m}^{3}
$$

Volume of penetrated part ：V2
Area of bow：S

$$
\begin{aligned}
& \begin{array}{l}
S=1 / 2 \cdot R 2(C-\sin C) \\
\text { Where unit of central angle } C \text { is radian. } \\
=1 / 2 \cdot 27.82 \quad(1.918-0.940)=378 \mathrm{~m}^{2} \\
\text { Then } \quad V 2=378 \mathrm{~m}^{2} \times 6.7 / 3=844 \mathrm{~m}^{3} \\
\quad V=(19,413-844) \times 2=37,138 \mathrm{~m}^{3}
\end{array}
\end{aligned}
$$

Hence maximum total tonnage T

$$
\mathrm{T}=37,138 \mathrm{~m}^{3} \times 1.7 \mathrm{mt} / \mathrm{m}^{3}=63,135 \mathrm{mt} .
$$

9－3．Calculations of live inventory Va

To simplifycaluculation，the live inventory was devided into volume of two perfect cones $\mathrm{V}^{\prime} 1$ and eight inverted cones $\mathrm{V}^{\prime} 2$ ．
$\mathrm{V}^{\prime} 1=\pi / 3 \cdot \mathrm{r}^{2}{ }^{2} \mathrm{~h} 1 \times 2=3.14 \times 122 \times 9 \times 2 / 3=2,713 \mathrm{~m}^{3}$
$\mathrm{V}^{\prime} 2=\pi / 3 \cdot \mathrm{r}^{2}{ }^{2} \mathrm{~h}_{2} \times 8=3.14 \times 62 \times 15 \times 8 / 3=4,521 \mathrm{~m}^{3}$
Hence volume of the live inventory is givenby the following equation．
$V^{\prime} \quad=V^{\prime}{ }_{1}+V^{\prime}{ }_{2}=2,713 \mathrm{~m}^{3}+4,521 \mathrm{~m}^{3}=7,234 \mathrm{~m}^{3}$
Then tonnage of the live inventory will be $7,234 \mathrm{~m}^{3} \times 1.7 \mathrm{mt} / \mathrm{m}^{3}=12,298 \mathrm{mt}$ ．

It was decided that central parts of the each con of the fine ore stock pile will be covered by octagonal pyramid shaped roofs in order to prevent from sliding due to the heavy rains．

End

[^0]: A：Required screen area in
 （sq ft）
 Q：Capacity in （st／h）
 B：Basic capacity based on opening size 0.757 （st／h／ft ${ }^{2}$ ）
 I：Factor due to slope of the screen 0.95 at 20 degrees
 D：Deck factor；Top deck 1．00，second deck 0．90，bottom deck 0.80
 So ：Oversize factor；Factor due to bigger particles than opening． 1.0
 Sh：Halfsize factor；\％of material in the feed less than one half the size of opening；20\％；0．7， $40 \% 1.0,70 \%$ ； 1.8
 F ：Factor due to shape of the opening Square；1．0，circle； 0.8 ， rectangular：L／S＝2～3；1．6，L／S＝3～6；1．4，L／S＞6； 1.1

